Schemata's Influence On Mathematical Problem Solving Skills

Wahyudi, S.B. Waluya, Hardi Suyitno, Isnarto

Abstract: Schemata is one of the factors that influence a person's ability to solve problems creatively. Schemata in one's memory will determine how new information is processed into a new concept. This study aims to describe schemata's influence on solving mathematical problems. This research is categorized as qualitative research. Data of thinking schemata and solving mathematical processes are collected by the method of think out loud and task analysis, namely by giving test questions and conducting interviews according to student responses and viewed from mathematical problem solving skills. The data are analyzed using Miles and Huberman's analysis techniques, through the three stages of reduction, presentation, and conclusion. The results showed that students' schemata varied according to their mathematical problem solving skills. Students with complete and systematic schemata (formal, content, and linguistic) structures had high mathematical problem solving skills. The process of problem solving was arranged in coherent and systematic ways with diverse answers. This happened because the adaptation process (assimilation and accommodation) and the formation of a concept scheme run well, neatly and completely. New schemata were well formed and produced balanced new knowledge. This Schemata will facilitate students to connect among concepts so that problems could be solved properly.

Keyword: schemata, mathematical problems, mathematical problem solving skills

1 INTRODUCTION

One of the purposes of learning mathematics is to improve creative thinking skills in solving problems (Nadjafikhah & Bakhshalizadeh, 2012). Creative thinking skills allow learners to produce a variety of problem solutions both the amount and the way used. Creative thinking skills are influenced by several factors. One of them is the prerequisite ability (background knowledge) previously owned. The prerequisite capabilities are the concept schemes built based on the students' experience (Piaget, 1980). These schemes will build a system called schemata (An, 2013). Schemata is a plural form or a collection of concept schemes representing a generic concept stored in memory (Rumelhart & Norman, 1985). Schemata is a mental representation of some aspects that serve to compare the knowledge that a person has with new information that goes into his or her memory (Gardner, 1987; Cook, 1989). Schemata develops according to one's experience (Cook, 1989; Piaget, 1980; Rumelhart & Norman, 1985; Neumann, & Kopcha, 2018; Longo & Perret, 2018). Schemata is what helps someone process new information until it solves the problem given to him. The ability to process information is part of a person's biological development and knowledge, including Metacognition (Flavell, 2004). In other words, when a person is able to organize and compile information using his or her experience, he or she will also use his or her metacognitive skills more often. This is also known as creative thinking, so schemata is very close to the improvement of creative thinking and has an important role in the development of one's thinking logic (Corcoranm, 2006).

The logic of thinking is what will help someone in solving the problems encountered including in solving mathematical problems. Schemata certainly encompass general aspects, and does not only apply to mathematics learning. In language learning, for example, schemata play a major role in improving students' reading skills, especially in terms of reading comprehension (Basmalah, 2013). Zhao & Zhu (2012) explicates further that in order to understand a text, people should “combine their own background knowledge with the information in a text. In this process, the prior knowledge and knowledge structure work effectively in people's cognitive activities” (p.111). Prior to this, Nunan (2001) shares the same argument that schemata massively influences the way we interpret the new information by offering a framework that is suitable with the new information gotten. Therefore, understanding the passage is such an interactive process among the reader and the passage, in which they should connect the hint in the text with their own schemata either it is content schemata, formal schemata, or linguistic schemata. Thus it takes the right way how to see how schemata is formed and how the schemata arrangement is stored in one's memory. This research will give an overview of how a person's schemata is constructed and develops from his mathematical problem solving skills. This research will focus on three types of schemata i.e. formal schemata, content and linguistics for geometric material builds flat.

2 RESEARCH METHODOLOGY

2.1 Participant

This research is a qualitative research with 30 students of pre-service Primary School teachers as the participants. Participant selection technique used is a non-probability sampling technique, which is taking a subject where each member of the population taken does not have the same opportunity to be the subject of research. The type of non-probability sampling used is purposive sampling, which is the taking of subjects used if the researcher has certain considerations with certain objectives.
2.2 Technique and Data Collection Instrument

Data in the form of creative thinking processes and thinking schemata are collected by the method of think out a loud (Charters, 2003) and task analysis (Someren, 1994), namely by giving test questions and conducting interviews according to student responses and viewed from the components of thinking system. This was done on the basis of Mayer's thinking (2009); Solso, Maclin & Maclin (2008) that thinking is cognitive activity that occurs in a person's mental or mind, is not visible, but can be inferred from visible behavior. The type of schemata in this study used opinions by Dixon & Zhao (2012) and Shuying An (2013) which has been modified in accordance with the needs of the research, namely about mathematics, creative thinking, geometry material of plane.

Table 1. Type and Descriptions of the Schematic in Thinking

<table>
<thead>
<tr>
<th>Type of Schematic</th>
<th>General Definition</th>
<th>Special Definition in Learning to Build Plane Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal Schemata</td>
<td>Schemata that refers to the initial knowledge a person has as a prerequisite knowledge to be able to understand and understand a new concept well.</td>
<td>Schemata that refers to the prerequisite knowledge that has been possessed before learning a plane in terms of rectangles include geometric definitions of plane geometry, geometric objects (points and lines), relationships of geometric objects (angles and distances), and types of plane geometry.</td>
</tr>
<tr>
<td>Content Schemata</td>
<td>Schemata referring to prior knowledge about new concepts that will be studied.</td>
<td>Schemata referring to prior knowledge about new concepts that will be studied are plane rectangular geometry (definition, types and characteristics, relationships between wakening flat rectangle, area and perimeter of rectangles and combined Flat Flat quadrilateral).</td>
</tr>
<tr>
<td>Linguistic Schemata</td>
<td>Referring to the knowledge of vocabulary and grammar associated with the concepts to be learned which serve as the basis for understanding more complex concepts or knowledge.</td>
<td>Schemata related to knowledge about vocabulary and grammar related to 2-D shapes such as points, lines, relationships between lines (parallel, intersecting, coinciding), angles, corresponding angles, acute angle, right angle, obtuse angle, area, circumference, similar and congruent, combination of 2-D shapes, area combination of 2-D shapes, application of the concept of 2-D shapes, problem solving related to 2-D shapes, etc.</td>
</tr>
</tbody>
</table>

2.3 Data Analysis Technique

Qualitative data analysis to analyze and map mathematical creative thinking schemes was done through several steps according to Miles & Huberman (1994), Creswell (2012) and Bazeley & Jackson (2013) namely data reduction, data presentation, and drawing conclusions.

Data Reduction

Data reduction is an activity that refers to the selection process, focusing to simplify abstracting and transforming raw data in the field. The steps of data reduction activities in this study are: 1) each level of creative thinking is taken by 1 subject, 2) the subject will be interviewed according to the questions given and answers given by students. To give a description of mathematical problem solving schemes then selected 3 subjects with high, medium, and low categories. Here are the questions given to the subject.

Subject 1

The interview results for subject 1, there are 4 correct answers can be seen from the recap of the following interview.

<table>
<thead>
<tr>
<th>Question</th>
<th>Subject 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question 1</td>
<td>How do you respond to the questions given?</td>
</tr>
<tr>
<td>Subject 1</td>
<td>It's easy and I can do it</td>
</tr>
<tr>
<td>Question 2</td>
<td>What are the related concepts related to?</td>
</tr>
<tr>
<td>Subject 1</td>
<td>Build a rectangular plane, namely parallelogram</td>
</tr>
<tr>
<td>Question 3</td>
<td>Explain in your own language the concept?</td>
</tr>
<tr>
<td>Subject 1</td>
<td>Parallelogram is a rectangular plane building that has 2 pairs of parallel sides, the angles have to be</td>
</tr>
</tbody>
</table>
the concept be used to solve the problem.

Question 5: Pay attention to alternative answers 1, 2, 3 and 4, what concepts do you use?

Subject 1: Parallelogram, triangle, rectangle, square

Question 6: Are there other concepts that can be used to answer this question?

Subject 1: No, only that

Question 7: Why did you choose these concepts?

Subject 1: As per the picture, the concept is related.

Question 8: Tell the relationship between the concepts?

Subject 1: The image on the question consists of 4 for the same triangle, thus the area of the parallelogram can be searched from 2 times the area of the triangle. You can also use the ABCD Rectangle then subtract the area of 2 triangles. If the 2 triangles that suckle the parallelogram is arranged then it can also form a square with a side length of 5, thus the area of the parallelogram is equal to the area of square. That's all, sir.

Subject 1: Question 10: Do you think of new ways to solve this problem?

Subject 1: No

In accordance with the answers in the interview, then the schemata structure of subject 1 can be described below.

<table>
<thead>
<tr>
<th>Type of Schemata</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal Schemata</td>
<td>Subject 1 had very good initial knowledge as a prerequisite concept. The concepts included angle, side, base, height, parallel, right angle, area, and circumference, even the concept of triangle, square, and rectangle. This was what facilitated subject 1 to produce several alternative answers in a variety of ways by determining the relationship between the concepts.</td>
</tr>
<tr>
<td>Content Schemata</td>
<td>The theme content of subject 1 was also very good. The subject understood in detail what parallelogram was as the main problem to solve. The subject was able to explain the definition and characteristics of parallelogram thus it makes it easier for the subject to solve the problem. The relationship between concepts as a prerequisite can also be associated with the parallelogram concept well, making it easier to solve problems.</td>
</tr>
<tr>
<td>Linguistic Schemata</td>
<td>Subject 1 linguistic / language schematic was also very good. Many terms can be conveyed by the subject such as angle, side, base, height, parallel, right angle, width, circumference, perpendicular up to straight, parallel, diagonal side, even the subject had a special term to make it easier to remember the parallelogram concept, namely parallelogram p x l only the width is the parallelogram height. This was done so that there wouldn’t be too many things to be stored in the brain.</td>
</tr>
</tbody>
</table>

These results indicate that subjects with high categories have excellent and complete schemes in both formal, content and linguistic schemes. This is what makes the assimilation process work well. Existing concepts are well organized and can be used to solve problems. In addition, the existing concept is able to produce new ways through the accommodation process so that new concepts are found that are relationships between concepts. Subject 1 gives 3 correct answers with systematic and correct finishing steps.

Subject 2: As per the answer to the subject 2 there are 2 correct answers. Based on this answer, interviews are then carried out and the results are as follows:

Question 1: How do you respond to the questions given?

Subject 2: Make you confused at first.

Question 2: What are the related concepts related to?

Subject 2: Build a rectangular plane, namely parallelogram

Question 3: Explain in your own language the concept?

Subject 2: Parallelogram is a rectangular plane building

Question 4: What mathematical terms are related to this problem?

Subject 2: Spacious, pedestal, high

Question 5: Pay attention to the alternative answers you produce, what concepts do you use?

Subject 2: Parallelogram and Triangle

Question 6: Are there other concepts that can be used to answer this question?

Subject 2: No, only that

Question 7: Why did you choose these concepts?

Subject 2: The picture shows only parallelogram and triangle.

Question 8: Tell the relationship between the concepts?

Subject 2: In the picture the parallelogram is made up of 2 triangles, so the area is directly added up

Question 9: How can the concept be used to solve the problems in the question?

Subject 2: As per the picture, it has something to do with Triangle and Parallelogram

Question 10: Are there other concepts related to the problem?

Subject 2: Nothing, first when I studied parallelogram, I discussed it myself about parallelogram has nothing to do with others. This is a coincidence that I see a triangle that forms a parallelogram. Even then, I was still confused because the picture of the parallelogram was different from the usual one

Question 11: Can you describe the pattern of relations between rectangular flat shapes?

Subject 2: What do you mean, sir, I don’t understand

In accordance with the answers in the interview, then the schemata structure of subject 2 can be described below.

<table>
<thead>
<tr>
<th>Type of Schemata</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal Schemata</td>
<td>Subject 2 had initial knowledge not yet complete as a prerequisite concept. The concepts possessed include area, base, height, and triangle. This concept helped subject 2 to produce several alternative answers.</td>
</tr>
<tr>
<td>Content Schemata</td>
<td>The theme of subject 2 content about parallelogram was only limited as a stand-alone rectangular building. Subject 2 only memorized the wide parallelogram is x height. The relationship between concepts as a prerequisite was only related to Triangle because</td>
</tr>
</tbody>
</table>
These results indicate that subject 2 with medium category has an incomplete scheme, only focusing on 2 concepts namely parallelogram and triangle. Nevertheless the assimilation process went well, especially those related to parallelogram thus it was able to provide two solutions to the problem. Subject 2 has not seen other concepts such as rectangles and squares, this causes subject 2 to only produce 2 solutions. What is interesting from the results of interviews is that learning patterns of plane was done partially, not paying attention to the relationship between plane building, so when asked about the relationship and classification the subject experiences confusion and cannot describe the relationship.

In accordance with the answers in the interview, then the schemata structure of subject 3 can be described below.

<table>
<thead>
<tr>
<th>Linguistic Schemata</th>
<th>Subject 2 linguistic schema / language was limited to area, base, height, triangle and parallelogram. This also limited Subject 2 to produce other problem solving alternatives.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal Schemata</td>
<td>Subject 3 did not have good initial knowledge as a prerequisite concept. Only rectangular concepts in general, and forgot the concepts that existed in the problem given. The subject also experienced confusion in building a rectangle that was the problem. This happens because the presentation of parallelogram images was not as usual, so subject 3 was confused.</td>
</tr>
<tr>
<td>Content Schemata</td>
<td>The content schemata of subject 3 on parallelogram was very weak, even having difficulty identifying that the problems presented are related to parallelogram. This happens because the parallelogram images are different from the pictures presented earlier.</td>
</tr>
<tr>
<td>Linguistic Schemata</td>
<td>The subject's linguistic schemes were only limited to rectangular flat, rectangular, wide, but many forgotten names.</td>
</tr>
</tbody>
</table>

These results indicate that subject 3 in the low category has an unfavorable scheme. This caused subject 3 cannot provide a solution to the problem. The assimilation process did not go well, many forgotten concepts even some were unknown to them. What's interesting about the results of the interview is that subject 3 did not like learning mathematics. Subject 3 did not feel comfortable and happy while studying mathematics, even tended to be afraid. This is what caused not many mathematical concepts stored in the subject's memory.

In accordance with the answers in the interview, then the schemata structure of subject 3 can be described below.

<table>
<thead>
<tr>
<th>Linguistic Schemata</th>
<th>In accordance with the answers in the interview, then the schemata structure of subject 3 can be described below.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formal Schemata</td>
<td>Subject 3 did not have good initial knowledge as a prerequisite concept. Only rectangular concepts in general, and forgot the concepts that existed in the problem given. The subject also experienced confusion in building a rectangle that was the problem. This happens because the presentation of parallelogram images was not as usual, so subject 3 was confused.</td>
</tr>
<tr>
<td>Content Schemata</td>
<td>The content schemata of subject 3 on parallelogram was very weak, even having difficulty identifying that the problems presented are related to parallelogram. This happens because the parallelogram images are different from the pictures presented earlier.</td>
</tr>
<tr>
<td>Linguistic Schemata</td>
<td>The subject's linguistic schemes were only limited to rectangular flat, rectangular, wide, but many forgotten names.</td>
</tr>
</tbody>
</table>

These results indicate that schemata structure that is owned by students can influence its ability to solve mathematical problems. This will make the adaptation process run well so that knowledge will continue to develop according to the good experience received by each student (Piaget, 1980). This good adaptation process enables the formation of interrelated concept schemes, namely schemata in student memory (Rumelhart& Norman, 1985). This scheme will be the capital of students to complete the questions given to them. This is in line with the opinion of Cook, 1989; Piaget, 1980; Rumelhart& Norman, 1985; Neumann &Kopcha, 2018; Longo & Perret, 2018, that a person’s scheme will develop in line with his experience. In accordance with these results, the next step is to conduct interviews related to the causes of unsuitable schemata in the memory of the student. Students with medium and low problem solving skills tend not to like mathematics since they are school in elementary school. They enter into an elementary school teacher candidate to avoid learning mathematics. This condition makes them not motivated to
learn math. Mathematics is not taught with the content of their lives, making it increasingly difficult to understand. It is not appropriate with the paradigm of learning mathematics today, where mathematics is close to humans, mathematics is part of human culture (Hersh, 1997; Greer, 1997; Rosa, 2011) and is part of social reality (Hersh, 1997; Zevenbergen, 2004). In addition, students are always faced with real problems that are interesting and challenging which are the application of the concepts to be studied. This pleasant problem is what gives students the opportunity to criticize problems in different ways and not be a pressure in their hearts carried out in groups. The results of critical thinking of each group will result in diverse and unique problem solving by adding activities that require each group to produce creative products and even new / different from the other in the form of problem solving ideas and creative products as a result of the application of the concept. This is in accordance with the thinking concept of Best & Thomas (2007); Torrance (1969) and McGregor (2007) that to produce something creative as a result of creative thinking (in this case mathematics) a process is needed to produce something and new ideas, original, to solve problems that exist well and collapse. If a person is not able to think of a solution and does not even understand the problem given, he will not be able to create a solution to the problem, especially if he has to be guided in many ways and new. Even to get creative thinking especially in mathematics, high curiosity is needed by the process of exploration and observation, as well as imagination and high originality of thought (Vale & Barbosa, 2015). If someone does not like what is being learned, their thinking process will be hampered, especially if they are required to think creatively. Student permissible is taught to take the meaning of the issue they learn. So carrying new ones they learn can be applied in everyday life. This is in accordance with the Brownell learning concept (1935), which is Meaning Theory (meaningful theory) and David Ausubel that learning will be more meaningful if it is associated with the contextual life problems of students. Student creativity in solving mathematical problems is also supported by a learning environment that fosters creativity from among students themselves (Soh, 2017, Mishra, 2017). There is an opportunity for each group to present the results in a face-to-face class, thus encouraging other groups to produce better works. This very positive learning environment triggered students with teams to continue to improve their creative work. Positive learning environments are also provided by lecturers in the form of learning simulations by lecturers using animation media, images and even video realities of life that are close to students so that they are easy to understand. This is consistent with the results of research by Tsai & Chung, (2015), that a positive learning environment will motivate students and be creative to produce something useful.

4 CONCLUSION
The results showed that students’ schemata varied according to their creativity in solving mathematical problems. Students with high creative thinking skills had complete and systematic schemata (formal, content, and linguistic) structures. The process of problem solving was arranged in coherent and systematic ways with diverse answers. This happened because the adaptation process (assimilation and accommodation) and the formation of a concept scheme run well, neatly and completely. New schemata were well formed and produced balanced new knowledge. This Schemata will facilitate students to connect among concepts so that problems could be solved properly.

ACKNOWLEDGMENT
We gratefully acknowledge the useful comments of Dr. Suryasatria Trihandaru, M.Sc. and Mozes Kurniawan, M.Pd lecturer in Universitas Kristen Satya Wacana. Gratefully acknowledge for Universitas Satya Wacana who has provided financial support and facilities for learning facilities in the classroom.

REFERENCES


