Modelling Software Reliability Growth Phenomenon In Distributed Development Environment

Nesreen Qallab, Omar Shatnawi

Abstract: The present scenario of software development life-cycle has switched into a distributed environment because of the development of network technology and ever increased demand of sharing the resources to optimize the cost. In the software reliability engineering literature, few attempts have been made to model the fault testing and debugging process in a distributed development environment. One of the reasons can be attributed to the complexity involved in developing large-scale distributed systems. As a result, their testing and debugging process is influenced by many internal and external factors, all of which may not be deterministic in nature. Since reliability is the only measure of software quality, a software reliability model is needed to estimate the current reliability level and the time and resources required to achieve the objective reliability level. As the area of software fault-debugging in distributed development environment is not thoroughly investigated in current literature, even though it is estimated to have been one of the most expensive endeavor in the industry. This objective dictates developing a non-homogenous Poisson Process based testing-effort dependent software-reliability modelling approach for distributed-systems developed under imperfect-debugging environment. The resultant integrated modelling approach describes the relationship among the calendar time, the testing-effort consumption, and fault-correcting/debugging process under imperfect-debugging environment. To the best of our knowledge this is the first time that this kind of integration modelling approach has been carried out for distributed systems. Fault-debugging process and testing-effort expenditures are described by a non-homogenous Poisson process and testing-effort curve functions respectively. Such a type of integrated modelling approach is very much suited also for object-oriented software development. Actual software reliability data cited in literature have been employed to demonstrate the applicability of the proposed integrated modelling approach. The results are fairly encouraging when compared with other existing approaches developed under similar environment.

1 INTRODUCTION

Developing large-scale distributed software system is generally a quite complex and time consuming process. Due to their development complexity, these systems are hardly ever “perfect” [1]. However, the nature and complexity of their requirements have drastically changed and users all over the world have become much more demanding in terms of cost, schedule and quality. Several techniques available for studying the cost and schedule of software; however, reliability is the only measure of software quality [2]. As software is created by error-prone humans, and there is no way to prevent programmers from making mistakes. Faults can be introduced during the software development lifecycle. Therefore, it is impossible to guarantee a failure-free software system [3], [4], [5], [6], [7], and [8]. In software reliability engineering literature, fault-debugging is challenging, and least developed. Software fault-debugging process is the process of detecting, locating, and correcting faults in software [9]. Approximately 20% of all software faults take 80% of all the required effort to debugging software faults [10]. Software failure is estimated to cost American industries USD 60 billion every year [11]. Jones state that imperfect-debugging of faults were discovered in almost every company [12]. Reusability is a key direction to improving software development productivity and quality, as it entails all entities of software development life cycle [13]. Due to high demand on quality and productivity in social systems, measuring software reliability in distributed development environment is major concern for software developers [5], [13], [14], and [15].

Software testing-effort expenditure is measured by resources such as man power spent during testing, CPU hours, number of test cases etc. Musa [2] indicated that the testing effort index or the execution time is a better time-domain for software reliability modeling than the calendar time. About half of the resources consumed during the software development cycle are testing resources. These testing resources spent in testing appreciably affect software reliability. The consumption curve of these resources over the testing period can be thought of a testing-effort curve. In other words, the function that describes how testing resources are distributed is usually referred to as testing-effort function and it has been incorporated into software reliability modelling. Various forms of testing-effort functions have been used in the literature viz., exponential, Rayleigh, Weibull, logistic etc. to represent effort consumption [16], [17], [18], [19], [20], and [21]. The rest of the paper is organized as follows: Section 2 reviews some of the well-documented and established non-homogenous Poisson process (NHPP) based software reliability model for software quality/reliability measurement and assessment in a distributed development environment. Section 3 proposes a newly developed quantitative technique for software quality/reliability measurement and assessment model. Section 4 defines the technique that has been employed for parameter estimation and software reliability data analyses, and provides the comparison criteria used for validation and evaluation. Section 5 presents the applications of the proposed integrated modelling approach to actual software reliability data through data analyses and model comparisons. Section 6 concludes and identifies possible avenues for future research.

2 SOFTWARE RELIABILITY MODELLING IN DISTRIBUTED DEVELOPMENT ENVIRONMENT: LITERATURE REVIEW

Software reliability models are useful in measuring reliability for the quality control and testing process control of software development. Many models have been proposed, but a few of
them have actually been applied to several software management tools which aid the software quality or reliability measurement and testing-progress control [5], [7], [22], [23], and [24]. Nowadays, NHPP models contribute to software reliability measurement in many software development houses [6], and [25]. They consider the debugging process as a counting process characterized by the value function of NHPP. Software reliability can be estimated once the mean value function is determined. Model parameters are usually determined using either maximum likelihood estimation (MLE) or least-square estimation (LSE) methods [5], [7], [26], and [27].

2.1 Software Reliability Modelling

The software development environment is changing from a host-concentrated one to a distributed one due to cost and quality aspects and rapid growth in network computing technologies. Under this environment software component can be developed at different geographical locations and components used in other software can be re-used. The NHPP based models that explain the software reliability growth phenomenon in distributed development environment can be classified into two categories. The first category is time-dependent behavior of fault correction process, that is, the number of software faults being corrected is proportional to the remaining number of faults [14]. The second category is time-dependent variation in testing-effort consumption, that is, the number of software faults being corrected by the current testing-effort expenditures at any time is proportional to the remaining number of faults [15]. Some of the general assumptions (apart from some special ones for specific models discussed) assumed in the models are as follows:

- Fault removal or debugging process follows NHPP. For re-used and newly-developed components has been modelled individually and is summed up to get the total removal or debugging process of the software system.
- Software is subject to failure during execution at random times caused by the manifestation of remaining faults.
- Software reliability growth phenomenon in the re-used components is uniform (i.e., follows an exponential growth curve) while in the newly-developed component is not (i.e., follows an S-shaped growth curve).

The following are some of NHPP based software reliability growth models that proposed for distributed development environment.

2.1.1 Yamada et al. [14] Model

This model was a pioneering attempt in the field of software reliability modeling and paved the way for modelling software reliability in distributed development environment. In this model, the authors claimed that it is empirically well-known that the cumulative number of detected faults follows an exponential curve when a software system consisting of several used components are tested in the testing phase; while on the other hand, the cumulative number of faults is described by an S-shaped growth curve when the newly developed component is used. Accordingly, they constructed a software reliability model for software systems developed under such an environment, which incorporates the delayed S-shaped model [26] for reused components, and the exponential software reliability model [27] for newly developed components.

2.1.2 Shatnawi [15] Model

The model integrates testing-effort function into Yamada et al. [14] model to get a better description of the software fault-correction process. To relax the pre-specified fault-content-weight or testing-weight parameters for each software component that has been adopted in the aforementioned models. The author assumed that he ratio of fault-density and the amount of testing-effort expenditure in re-used to newly-developed component is about 1 to 4, as reported [28] "the defect rate for reused code is 0.9 defects per KLOC, while the rate for newly developed software is 4.1 defects per KLOC in a study conducted at Hewlett-Packard (HP)".

2.2 Study Motivation

The aforementioned software reliability models are constructed considering the debugging scenarios as tabulated in the below Table 1. However, none of them provide insightful interpretations for both the testing-effort expenditure and imperfect-debugging phenomena during testing and debugging phase. A proposed solution is developing an integrated modelling approach. This necessitates a modelling approach that can be modified without unnecessarily increasing the complexity of the resultant model.

Therefore, this study has attempted to develop an integrated modelling approach, so as to incorporate the effect of fault-correction/debugging complexity with time-dependent variation in testing-effort consumption for distributed systems developed under imperfect debugging environments. Such a type of integrated modelling approach is very much suited also for object-oriented (OO). Experimentation has shown that models based on execution time are superior to those based on calendar-time [2] and [29].

<table>
<thead>
<tr>
<th>Modelling Approach</th>
<th>Calendar-Time</th>
<th>Testing-Effort (CPU time)</th>
<th>Imperfect-Debugging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yamada et al. [14]</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
<tr>
<td>Shatnawi [15]</td>
<td></td>
<td>✅</td>
<td></td>
</tr>
<tr>
<td>Proposed</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
</tr>
</tbody>
</table>

To the best of our knowledge this is the first time that this kind of non-homogenous Poisson process based integration modelling approach that describes the relationship among the calendar time, the testing-effort consumption, and fault-correction/debugging process under imperfect-debugging environment, has been studied for distributed systems.

3 Testing-Effort Dependent Software Reliability Modelling for Distributed Systems in Imperfect Debugging Environment: A Proposed Integrated Approach

3.1 Testing-Effort Modelling

Testing and debugging phase in the software development process aims at detecting and correcting faults, and hence making the software more reliable. This phase, which aims to improve the reliability of a software system, is the most expensive, time-consuming phase among the four phases. About half of the resources consumed during the software development cycle are testing resources [18] and [30]. Moreover, because the sizes of software systems have increased significantly during the past decades, effective
utilization of limited testing resource has become even more important than before [31]. Software testing-effort expenditure is measured by resources such as man power spent during testing, CPU hours, number of test cases etc. These testing resources spent in testing appreciably affect software reliability. The consumption curve of these resources over the testing period can be thought of a testing-effort curve. Various forms of testing-effort functions have been used in the literature such as exponential, Rayleigh, Weibull, logistic etc. [16], [17], [18], [19], [20], and [21]. To study the testing-effort consumption process, one of the below functions can be selected for the purpose:

- Exponential
- Rayleigh
- Weibull
- Logistic

The first two can be derived from the assumption that, “the testing effort rate is proportional to the testing resources available.”

\[
\frac{d}{dt} W_t = c(t) \cdot (\alpha - W_t)
\]

(1)

Solving (1) under initial condition \(W_{t=0} = 0 \), yields

\[
W_t = \alpha \cdot (1 - \exp(-c \cdot t))
\]

(2)

Case 1: If \(c(t) = c \), we get exponential curve:

\[
W_t = \alpha \cdot (1 - \exp(-c \cdot t))
\]

(3)

Case 2: If \(c(t) = c \cdot t \), we get Rayleigh type curve:

\[
W_t = \alpha \cdot (1 - \exp(-\frac{c \cdot t}{2}))
\]

(4)

Case 3: If \(c(t) = c \cdot r \cdot t^{r-1} \), we get Weibull function:

\[
W_t = \alpha \cdot (1 - \exp(-\frac{c \cdot t^r}{2}))
\]

(5)

Exponential and Rayleigh curves become special cases of the Weibull curve for \(r = 1 \) and \(r = 2 \) respectively.

Case 4: If we define

\[
\frac{d}{dt} W_t = c \cdot \frac{W_t}{a} (\alpha - W_t)
\]

(6)

On solving, the cumulative testing effort consumed in the interval \((0, t)\) is given by

\[
W_t = \frac{a}{1 + r \cdot \exp(-c \cdot t)}
\]

(7)

This is the Logistic testing-effort function.

3.2 Integrating Modelling Approach

The present scenario of software development lifecycle has emerged into a distributed environment because of the development of network technology and ever increased demand of sharing the resources to optimize the cost. Therefore, distributed systems are fast-growing in reply to the achievements of computer hardware and software industries. Large-scale distributed systems developments are now common in air traffic-control, telecommunications, defense and space [5]. Thus, it is important to assess the reliability of software developed in distributed environment because of increasing the demands on quality and productivity in social systems [13]. Reusability is a key direction to improving software development productivity and quality [16]. Distributed systems are depending heavily on traditional software engineering methodologies [15]. Debugging is one of the most challenging, and least developed areas of software engineering. The testing and debugging activities in perfect and imperfect debugging environments [32] are depicted in Figures 1 and 2 respectively.

Fig. 1 the perfect debugging-process

Fig. 2 the imperfect debugging-process

The main objective of this study is to develop a software reliability model based on more realistic assumptions depicting different phenomena during the testing and debugging phase in a distributed development environment. The first step in achieving this objective is to identify the unrealistic assumptions which existing models are based on. The second step is to build flexible model which relax these assumptions. The following are some of unrealistic assumptions

- All faults are of the same type, complexity and have the same impact on the reliability growth.
- Testing-effort employed to detect, isolate and correct the faults has the same consumption pattern.
- Pre-specified testing-weight parameters for each software component.

To address these unrealistic issues, a newly developed NHPP based software reliability growth model for distributed system, through an integrated modelling approach incorporating software fault debugging complexity under imperfect fault debugging environment is proposed.

3.2.1 Assumptions and Notations

The following are the basic assumptions in developing the proposed modelling approach:

- Software is subject to failures during execution caused by the remaining faults.
- Fault correction phenomena follows an NHPP with \(m_{w_f} \).
- Testing resource is not constantly allocated during software testing phase, which can largely influence the debugging process.
- Faults encountered are of three types: easy, hard, and complex, which are of different debugging complexity.
- The ratio of fault density and the amount of testing-effort expenditure in reused to newly developed components is about 1 to 4.
- Each time a fault is reported, an immediate (delayed) effort takes place to locate/isolate it in order to correct it. The time-delay between the fault detection or located and its subsequent correction is assumed to represent the debugging complexity of the faults.
- The fault debugging process is imperfect. Therefore, the
testing and debugging team may not be able to remove the fault perfectly and the original fault may remain or get replaced by another fault. While the first phenomenon is known as imperfect debugging, the second is called error-generation.

The following notations are used for the mathematical formulation purpose:

- \(m_{w_i} \): Expected number of faults debugged in time-dependent variation in testing-effort consumption \((0, W_t)\)
- \(i, j \): Subscripts that denotes the re-used and newly developed components respectively
- \(m_i \): Expected number of faults debugged in reused components
- \(m_j \): Expected number of faults debugged in newly developed components
- \(W_t \): Amount of testing-effort consumed in the time interval \((0, t)\)
- \(W_{i,j} \): Expected effort spent on components debugging \(W_i = W_t \cdot g_i; W_j = W_t \cdot g_j \)
- \(w_{i,j} \): Current effort spent on components debugging that is, \(W_i = \int w_{i,j} \cdot dx \)
- \(g_{i,j} \): Proportion of effort spent on components debugging \(0 \leq g_{i,j} \leq 0.2(0.8); \sum g_{i,j} = 1 \)
- \(a \): Total number of faults lying dormant in software \(\sum a_{i,j} = a \)
- \(a_{i,j} \): Initial fault-content in components \(a_i = a h_i; a_j = a h_j \)
- \(h_{i,j} \): Proportion of fault-content in components \(0 \leq h_{i,j} \leq 0.2(0.8); \sum h_{i,j} = 1 \)
- \(p \): Probability of fault removal on a detection of a fault
- \(c_t \): Rate at which faults may be introduced during the debugging process
- \(\gamma, c, r \): Constant parameter in testing-effort functions

3.2.2 Modelling the Imperfect Fault Debugging Process of ‘i’ Reused Components

To model the fault correction process of ‘i’ re-used components, the imperfect-debugging model with testing-effort [5] and [19] is adopted for the purpose. The adopted model assumed that reported faults are of two types: ‘hard to debug’ and ‘complex to debug’. Their debugging process is modeled as one-stage process and three-stage process respectively. For ‘hard to debug’ faults, the imperfect debugging process is modeled as a two-stage process—fault detection followed by correction as illustrated in Figure 4. The mean value function for components containing ‘hard to debug’ faults with boundary condition that \(m_{w_{i,j}} = 0 \) is given as

\[
m_{w_{i,j}} = a_{i,j} \cdot \frac{1}{1-a_{i,j}} \left(1 - \left(\frac{1}{1+b_{i,j}} \cdot w_{i,j} \right) \cdot e^{-b_{i,j}w_{i,j}} \right)^{p_f(1-a_{i,j})} \quad (9)
\]

Fig. 4 the fault debugging process for ‘hard to debug’ type

For ‘complex to debug’ faults, the imperfect debugging process is modeled as a three-stage process—fault detection, isolation followed by correction as illustrated in Figure 5. The mean value function for components containing ‘complex to debug’ faults with boundary condition that \(m_{w_{i,j}} = 0 \) is given as

\[
m_{w_{i,j}} = a_{i,j} \cdot \frac{1}{1-a_{i,j}} \left(1 - \left(\frac{1}{1+b_{i,j} + b_{i,j}^2 \cdot w_{i,j}^2} \cdot e^{-b_{i,j}w_{i,j}} \right) \cdot \frac{p_f(1-a_{i,j})}{2} \right) \quad (10)
\]

Fig. 5 the fault debugging process for ‘complex to debug’ type

The total imperfect debugging of ‘j’ newly developed components is the superposition of the sum of the two debugging-process with mean value functions given in (9) and (10) respectively, as

\[
m_{w_{i,j}} = \left(a_{i,j} \cdot \frac{1}{1-a_{i,j}} \right) \left(1 - \left(\frac{1}{1+b_{i,j} + b_{i,j}^2 \cdot w_{i,j}^2} \cdot e^{-b_{i,j}w_{i,j}} \right) \cdot \frac{p_f(1-a_{i,j})}{2} \right) + \frac{a_{j}}{1-a_{j}} \left(1 - \left(\frac{1}{1+b_{i,j} \cdot w_{i,j}} \cdot e^{-b_{i,j}w_{i,j}} \right) \cdot \frac{p_f(1-a_{i,j})}{2} \right) \quad (11)
\]

3.2.3 Modelling the Imperfect Fault Debugging Process of ‘j’ Newly Developed Components

To model the fault correction process of ‘j’ newly developed components, the imperfect-debugging model with testing-effort [5] and [19] is adopted for the purpose. The adopted model assumed that reported faults are of two types: ‘hard to debug’ and ‘complex to debug’, and their debugging process is modeled as two-stage process and three-stage process receptively. For ‘hard to debug’ faults, the imperfect debugging process is modeled as a two-stage process—fault detection followed by correction as illustrated in Figure 4. The mean value function for components containing ‘hard to debug’ faults with boundary condition that \(m_{w_{i,j}} = 0 \) is given as

\[
m_{w_{i,j}} = a_{i,j} \cdot \frac{1}{1-a_{i,j}} \left(1 - \left(\frac{1}{1+b_{i,j} \cdot w_{i,j}} \cdot e^{-b_{i,j}w_{i,j}} \right) \cdot p_f(1-a_{i,j}) \right) \quad (9)
\]

Fig. 3 the fault debugging process for ‘easy to debug’ type

3.2.4 Modelling the Total Imperfect Fault Debugging Process

The proposed modelling approach for software developed in distributed environment is the superposition of the sum of the total debugging process of ‘i’ reused and ‘j’ newly developed components.
components with mean value functions given in (8) and (11) respectively, as
\[m_t = \sum_{i=1}^{n} m_{wi} + \sum_{j=n+1}^{m} m_{wi} + \sum_{j=n+1}^{m} \left(1 - e^{-p_j b_j (1 - a_j) w_{ti}} \right) + \left(1 - \left(1 + b_j \cdot w_{ti} \right) e^{-b_j w_{ti}} p_j (1 - a_j) \right) \]

This proposed modelling approach given above in (12) is very interesting from various points of view. Besides its interpretation, it has the [14] and [15] models as special cases. Thus, highlight it is flexibility and applicability.

4 MODEL VALIDATION AND COMPARISON CRITERIA

For model validation and evaluation, we consider a simple case in which the software system composed of two re-used software components and two newly developed.

\[m_t = \sum_{i=1}^{n} m_{wi} + \sum_{j=3}^{m} m_{wi} + \sum_{j=3}^{m} \left(1 - e^{-p_j b_j (1 - a_j) w_{ti}} \right) + \left(1 - \left(1 + b_j \cdot w_{ti} \right) e^{-b_j w_{ti}} p_j (1 - a_j) \right) \]

where
\[a_1 = a \cdot h_1; a_2 = a \cdot h_2 = a \cdot (2 - h_1); \]
\[a_3 = a \cdot h_3; a_4 = a \cdot h_3 = a \cdot (2 - h_3); \]
\[\sum_{k=1}^{n} a_k = a; b_1 = b_2; b_3 = b_4; \]
\[W_{(1)} = W_t \cdot g_1; W_{(2)} = W_t \cdot g_2 = W_t \cdot (8 - g_3); \]
\[\sum_{k=1}^{4} W_t(k) = W_t; \]

4.1 Software Reliability Data Analysis Technique

Before applying any software reliability model to a set of reliability data it is advisable to determine whether the reliability data does, in fact, exhibit reliability growth. If a set of reliability data does not exhibit increasing reliability as testing progresses, there is no point in attempting to assess system’s reliability. Since the proposed models are fault-count models, the test may only be applied to data in which the test intervals are of equal length. Therefore, we divided the time interval \((0, t]\) into \(k\) units of time of equal length. The Laplace trend test is commonly carried out [4], [6], and [33]: Laplace Test. This test is superior from an optimality point of view and is recommended for use when the NHPP assumption is made. In terms of \(n_{t_i}\) the number of faults during unit of time \(i\), the expression of the Laplace factor is
\[u_k = \sqrt{\frac{1}{k^{(1-\rho)}} \frac{1}{\sum_{i=1}^{k} n_{t_i}}} \]

In practice, in the context of reliability growth, negative values indicate a decreasing failure intensity and thus a reliability increase, positive values suggest an increasing failure intensity and thus a reliability decrease, and values oscillating between -2 and +2 indicate stable reliability. In other words, in order to determine whether the software underwent a reliability growth or not, we apply both the arithmetic mean and Laplace trend test to the software reliability dataset.

4.2 Parameter Estimation Techniques

Parameters estimation is of primary concern in software reliability measurement. Software testing-effort data can be collected during testing and debugging from in the form of resources \(w_i(0 < x_1 < x_2 < \cdots < x_p)\) spent in the time interval \((0, t_i]\) where \(i = 1, 2, \ldots, k\). Testing-effort curve function can be estimated by the method of LSE as follow
\[
\text{minimize } \sum_{i=1}^{k} (W_i - \bar{W}_i)^2 \\
\text{subject to } W_k = W_k
\]

where \(\bar{W}_k = W_k\) implies that the estimated value is equal to the actual value. Using these estimated parameters values; we estimate the parameters in the proposed integrated modelling approach given in (12) by the method of MLE. The Likelihood function \(L\) for the unknown parameters with the mean value function \(m_t\) takes on the form
\[
L(\text{parameters}|W_i(x_i)) = \prod_{i=1}^{k} \left(\frac{(m_{t_i} - m_{t_{i-1}})^{x_i} - 1}{(x_i - x_{i-1})!} \right) e^{-(m_{t_i} - m_{t_{i-1}})}
\]

The MLE of the unknown parameters can be obtained by maximizing the likelihood function subject to the parameters constraints. For faster and accurate calculations, the Statistical Package for Social Sciences (SPSS) based on the linear regression technique has been utilized for the estimation of the parameters of the models under comparison.

4.3 Model Validation

To check the validity of the models under comparison including the proposed model given in (12) to describe the software reliability growth, we evaluate the performance of the models under comparison using SSE, Bias, Variation, and RMSPE metrics. The smaller the metric value the better [5]. The Sum of Squared Error (SSE). The models under comparison are used to simulate the reliability data, the difference between the expected values, \(\hat{m}_{t_i}\) and the observed data \(x_i\) is measured by SSE as follows:
\[
\text{SSE} = \sum_{i=1}^{k} (\hat{m}_{t_i} - x_i)^2
\]

where \(k\) is the number of observations. Bias. The difference between the observation and prediction of number of faults at any instant of time \(i\) is known as PE\(_i\) (prediction error). The average of PE\(_i\) is known as bias.
\[
\text{Bias} = \frac{1}{k} \sum_{i=1}^{k} \text{PE}_i
\]

where PE\(_i\) = \(\text{Actual}\(\text{observed}\)\(_i\) - \text{Predicted}\(\text{estimated}\)\(_i\)\). Variation. The standard deviation of prediction error is known as variation.
\[
\text{Variation} = \sqrt{\frac{1}{k-1} \sum_{i=1}^{k} (\text{PE}_i - \text{Bias})^2}
\]

Root Mean Square Prediction Error (RMSPE). It is a measure of closeness with which a model predicts the observation.
\[
\text{RMSPE} = \sqrt{(\text{Bias}^2 + \text{Variation}^2)}
\]

In other words, we evaluate the performance of the models under comparison using SEE, bias, variation, and RMSPE
metrics. For these metrics, the smaller the metric value the
to software reliability model.

5 DATA ANALYSES AND MODEL COMPARISONS
For model validation and evaluation, we consider a simple
case in which the software system composed of two reused
software components and two newly developed. Actual
software reliability data collected from real software
development project, has been analyzed to show the
applicability of the proposed modelling approach. As this
dataset was extensively studies [14] and [15], direct
comparison with the work of other can be made.

5.1 Software Development Project
The software reliability data had been collected during 19
weeks of testing and debugging of PL/I application program
test data of size 1,317,000 lines of code (LOC). Over the
course of 19 weeks, 47.65 CPU hours were consumed, and
328 software faults were reported [34]. In this project, we
assume that this dataset was observed from the testing phase
after confirmation of the integration of all software
components. Figure 6 traces the Laplace trend test. The
values of the trend test that are oscillating between 2 and +2
indicate stable reliability till the 17th week. Except for the 5th
week, we see decay, and because the decay does not last for
long period, we should not pay attention to it. Stable reliability
trend indicates that the corrective actions have no visible effect
on reliability. In such situation the testing and debugging team
must introduce new test sets. However, after 16th week, the
behaviour becomes stable, which means that reliability grew
monotonically. In such situation the system is used less or the
reason behind this may also be due to unrecorded faults.
Therefore, the testing and debugging team must take
particular care [4], [6], and [33].

![Fig. 6. Laplace test data trend](image)
The resultant parameter estimation and the goodness-of-fit
metrics in terms of SSE, Bias, Variation, and RMSPE of the
models under comparison are tabulated in Table 2. According
Table 2 we can see that the logistic function has lower metric
values among the testing-effort functions under comparison.
Therefore, the comparison criteria favour the logistic testing-
effort function and, hence, adopted for further evaluation. It is
worth mentioning that the exponential function fails to give any
plausible estimation results.

![Fig. 7. Non-cumulative testing-effort curves](image)
![Fig. 8. Cumulative testing-effort curves](image)

The fitting of the testing-effort functions under comparison to
the actual non-cumulative and cumulative testing-effort are
graphically illustrated in Figures 7 and 8 respectively. From
both Figures, we can observe that the logistic testing-effort
function provides a better fit than the other functions under
comparison. Therefore, the logistic testing-effort function
provides more accurate description of resource consumption
than other functions.

<table>
<thead>
<tr>
<th>Functions Under Comparison</th>
<th>Parameter Estimation</th>
<th>Comparison Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>γ</td>
<td>c</td>
</tr>
<tr>
<td>Exponential</td>
<td>*</td>
<td>c0</td>
</tr>
<tr>
<td>Rayleigh</td>
<td>49.32</td>
<td>0.01</td>
</tr>
<tr>
<td>Weibull</td>
<td>799.2</td>
<td>0.00</td>
</tr>
<tr>
<td>Logistic</td>
<td>54.84</td>
<td>0.22</td>
</tr>
</tbody>
</table>

* the function fails to give any plausible result.
— the component is not part of the corresponding function

The resultant parameter estimation of the models under
comparison are tabulated in Table 3. According to the
estimated values of the proposed model, the probability of
perfect debugging or debugging efficiency ‘p’ of the faults encountered in the reused components is lower than that encountered in the newly developed components and the error introduction or generated rate ‘a’, reveals that the debugging process doesn’t introduce any error for re-used components but it is not the case for newly-developed components.

Table 3. Parameter estimation.

<table>
<thead>
<tr>
<th>Models Under Comparison</th>
<th>Parameter Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α</td>
</tr>
<tr>
<td>Yamada et al. [14]</td>
<td>378.1</td>
</tr>
<tr>
<td>Shatnawi [15]</td>
<td>419.4</td>
</tr>
<tr>
<td>Proposed</td>
<td>300.6</td>
</tr>
</tbody>
</table>

It is estimated that a total of 408.81 faults were detected in the 19 weeks including 108.17 faults were introduced or generated, and out of them, only 336 were perfectly debugged and corrected as shown in Table 4.

Table 4. Results.

<table>
<thead>
<tr>
<th>Initial Fault-Content</th>
<th>Effort Consumed</th>
<th>Total Fault-Content</th>
<th>Number of Fault-Introduced</th>
<th>Number of Fault-Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Wᵢ</td>
<td>aᵢ = α + α · mᵢ</td>
<td>aᵢ − α</td>
<td>mᵢ</td>
</tr>
<tr>
<td>300.64</td>
<td>46.55</td>
<td>408.81</td>
<td>108.17</td>
<td>335.53</td>
</tr>
</tbody>
</table>

The resultant goodness-of-fit metrics in terms of SSE, bias, variation and RMSPE of the proposed model compared with other existing models are given in Table 5. As given in Table 5, the overall values of SSE, bias, variance and RMSPE for the proposed model are the lowest. As results of comparison, we may conclude that the proposed modelling approach fits better than the other models under comparison for this actual software reliability data.

Table 5. Comparison criteria metrics results.

<table>
<thead>
<tr>
<th>Models Under Comparison</th>
<th>Comparison Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SSE</td>
</tr>
<tr>
<td>Yamada et al. [14]</td>
<td>2374.7</td>
</tr>
<tr>
<td>Shatnawi [15]</td>
<td>1757.6</td>
</tr>
<tr>
<td>Proposed</td>
<td>1484.3</td>
</tr>
</tbody>
</table>

As the software system composed of four components, two of them are re-used and the other two are newly-developed. Tables 6 and 7, reveal very important results that can be of immense help to the software developer and decision maker such as the initial fault-content, amount of testing-effort expenditure, total number of fault-content included the number of fault-introduced due to imperfect-debugging environment, and number fault-corrected for each of these components.

Table 6. Comparison criteria metrics results.

<table>
<thead>
<tr>
<th>Models Under Comparison</th>
<th>Re-used Components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Component 1</td>
</tr>
<tr>
<td></td>
<td>a₁</td>
</tr>
<tr>
<td>Yamada et al. [14]</td>
<td>18.9</td>
</tr>
<tr>
<td>Shatnawi [15]</td>
<td>51.6</td>
</tr>
<tr>
<td>Proposed</td>
<td>45.1</td>
</tr>
</tbody>
</table>

Table 7. Comparison criteria metrics results.

<table>
<thead>
<tr>
<th>Models Under Comparison</th>
<th>Newly Components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Component 3</td>
</tr>
<tr>
<td></td>
<td>a₃</td>
</tr>
<tr>
<td>Yamada et al. [14]</td>
<td>170</td>
</tr>
<tr>
<td>Shatnawi [15]</td>
<td>158.2</td>
</tr>
<tr>
<td>Proposed</td>
<td>105.2</td>
</tr>
</tbody>
</table>

The fitting of the proposed model to the actual non-cumulative and cumulative software reliability data are graphically illustrated in Figure 9 and 10 respectively. From both Figures, we can observe that the proposed model is very close to the actual software reliability data and fits the data excellently well.

Fig. 9. Non-cumulative reliability curve

Fig. 10. Cumulative reliability growth curve

6 Conclusion

In this paper, we have explored the importance of testing-resource and imperfect-debugging phenomenon, through an integrated component-based modelling approach for distributed development environment. Therefore, this study thus provides a new insight into development of an integrated
component-based modelling in software reliability engineering, that could be of immense help to the software project manager in monitoring and controlling the testing process closely and effectively allocating the resources in order to reduce the testing cost and to meet the given reliability requirements. Finally, this study provides a new insight into the development of software reliability modelling in distributed development environment. It has also demonstrated the integration of a set of existing non-homogenous Poisson process-based software reliability model. The resultant integrated component-based modelling approach has been validated and compared with other existing non-homogenous Poisson process based software reliability models by applying them on three software reliability data. The results were very promising. Today is a period of transition for neural network technology. As neural network can be described in a mathematical form and they have a significant advantage over analytical models, because they require only software reliability data history as input and no assumptions. The extension of our integrated component-based modelling approach to demonstrate the applicability of the neural network approach to the modelling of software reliability in distributed development environment, is an ongoing challenge that stimulates more future research efforts.

ACKNOWLEDGMENT

The first author would like to emphasise that much of the research that has found its way into this manuscript was carried out during her Thesis-based M.Sc. in Computer Science programme and she would also like to gratefully acknowledge the support of Al al-Bayt University.

REFERENCES

