Real-Time Lane And Object Detection For Driver Alertness Systems

D. G. Ganage, N. S. Nikam, S. A. Wagh

Abstract: Internet Protocol (IP) camera is employed for lane and object identification. Gaussian blur is applied in preprocessing for smoothing the input image and canny edge operator is utilized for edge identification. The straight line on the lane is detected using the application of Hough Transform. The center of lane is referred as vanishing point, and if the object is displaced on left-side or right-side of the lane with respect to vanishing point result in generating the honking sound to alert the driver. The outcome of the techniques proposed is utilized for the framework to accomplish the goal of Advanced Driver Assistance Systems (ADAS). This scheme can be employed in implementation for driverless car system.

Index Terms: Advanced Driver Assistance Systems, Canny operator, Hough transform, Internet protocol.

1 INTRODUCTION

As reported by the National road Traffic Safety Administration (NHTSA) regarding eighteen thousand individuals a year area unit damage in backhoe accidents within the U.S. only, among regarding three thousand suffering “incapacitating” injuries. Forty-four % of the incidents involve youngsters below age five. During a connected study, NHTSA establish a certain not economical sensing-based answer exists for preventing several of those accidents, which camera-based solutions area unit the foremost encouraging mechanism. Latterly, vital development has been created within the area of camera dependent person detection. Anyhow, ongoing explication target front applications and area unit design for upright, totally visible pedestrians. Such solutions don't work for pedestrians in non-upright poses, and specifically children. They need additionally difficulties in detection part occluded pedestrians, and close-by pedestrians that area unit also not totally visible to the camera. Determination these problems are critical for reaching systems capable of preventing back-over accidents. Now a days, number of vehicles growing rapidly due to this mental and physical stress of the driver’s changes. So, the accident rate increases year by year. Require the Advance Driver Assistance System (ADAS) support the driver. Implementing intelligent hardware system like camera. Ultra Sound and Infrared can assist the driver, alert them for many feasible problems on the path and help to reduce accident. When camera is integrated with the car or any vehicle, camera takes the snapshots continually. It contains many frames and frames contain many details information.

2 RELATED WORK

At the start with color input image is converted into gray scale image [1] and subsequently shadow is removed. Firstly, apply modified canny transform for edge detection and then Hough transform is manipulating on the binary image which is output of the canny transform. On the horizon line path boundary scan impose result of Hough transform and edge detection. The scanning portion of the image there Hough lines meet at the bottom image border. Liu et al. [2] presents enhancement of traditional sequential Monte Carlo (SMC) or particle filter [3]. This is appropriate for linear and parabolic lane detection system. In the early stage, Inverse Perspective Mapping (IPM) of an image is achieving. In IPM, definite legend is used as position of object, gradients of the line and color of the image are used to identify road marking. Applying Statistical Hough Transform (SHT) parameters of straight line is finding. Sobel transform is employed to identify the edges. Chunyang Mu et al. [4], present the lane recognition using Sobel operator. Firstly, color transformation is done. In color transformation RGB color image is converted into YCbCr color space and then piecewise linear transformation (PLT). PLT is used when light contrast is dim the lane is not detected correctly. Then the OTSU segmentation is applied for thresholding and morphological operation is done. Sobel transform is used to detect edges of lane. In [5], [6], path recognition algorithms are constructed on thresholding as well as Hough Transform (HT) under various light intensities. Firstly, Region of Interest (ROI) is finding to reduce the computation and complexity and then ROI segmentation. At last HT is used to analysis the straight line and parabolic shapes identification. This system is only on software based so save hardware cost. Piotr Doll’ar et al. [7] present the feature pyramid for object detection by using Aggregate Channel Feature (ACF), Integral Channel Features (ICF) and Deformable Part Models (DPM). In this paper, different dataset applied like Caltech, TUD-Brussels, INRIA and ETH datasets for pedestrian detection and other object detection using PASCAL VOC dataset. It calculates pyramid to low cost for computation without immutable performance. Wagne et al. [8], presents detection of pedestrian by using vision-based systems. For pattern recognition and object detection thermal camera gives supplementary input channel. That channel helps to solving task. Deep convolutional neural networks are trending approach for object and patter identification. It implemented using two deep fusion systems which are early as well as late architecture using pre-trained network. It gives the solution for late fusion combination of aggregate channel features, thermal image and histogram of gradients. Xiaogang Chen et al. [9], Caltech, ETH and INRIA these three datasets are used for object detection. Deep Convolutional Neural Network (DCNN) and Aggregate Channel Features (ACF) are applied for fine object detection and pedestrian detection. Caltech dataset is larger one than the INRIA dataset, Caltech required more computation time than the INRIA.

D. G. Ganage is currently pursuing Ph. D. degree program in Electronics & Telecommunication in Savitribai Phule Pune University, India. E-mail: dgganage@gmail.com

N. S. Nikam is currently pursuing master’s degree program in Electronics engineering in Sinhgad College of Engineering, Pune, India. E-mail: nannikds@gmail.com

S. A. Wagh is currently working in Electronics & Telecommunication in Sinhgad Institute of Technology & Science, Pune, India. E-mail: suchitawagh@gmail.com
3 Methodology

The methodology introduces the track recognition and pedestrian detection using the IP camera. By using Canny edge operator method is decreases erroneous detection and boundary detection and so it will enhance the fidelity of real time system. The vision-based lane and object detection for assisting to the driver. Figure 1 illustrated that traditional flow diagram of lane detection and steps are described as follows:

I. Capture input image by using Internet Protocol (IP) camera.
II. Then it is needed to use Gaussian filter to gives faster performance.
III. Canny edge detector is use to finding the edges having better performance than Sobel and Robert operator.
IV. Apply Hough Transform for straight line and parabolic line identification.
V. At last, lane direction is finding for driver assistance.

Figure 2 exhibit that step by step diagram of object detection. In object identification basically it detects only car and person. The car and pedestrian identification implemented by using Aggregate Channel Feature (ACF). ACF features approximation in higher layer. Due to this the no. of times the feature computation requires very less in case of ACF than traditional Histogram of Orientated Gradients (HOG). That is why it saves the computation, thus, faster.

4 Proposed Method

Figure 3 demonstrate that the design of the network. At the start, input image capture from the camera and firstly detect the lane and then object. According to the condition, it gives notification to the driver. Implementation of the project is done by mounting the Internet Protocol (IP) camera on the dashboard. The IP camera should be place in such a way that the vehicle or pedestrian see at exact position and also see the lane marking to the driver. Camera is connected to the system by using the Wi-Fi/USB. MATLAB is running on that system to detect lane and object. The process is start from snapshot of input image. The frames from the IP camera are preprocessing firstly. In preprocessing of the input image is done by applying Gaussian filter to remove noise in the input image. That image feed to the edge detection and then Hough transform is applied to detecting the lane.

Preprocessing

In Preprocessing the Gaussian filter is used to smooth the image. By applying Gaussian blur filter has the effectual of shrink the high frequency components into low frequency components consequently low pass filter. Within the Gaussian operator the function of Gaussian is a impulse response. It remodels and improve input signal through convolution including Gaussian function. Smoothing of Gaussian operator is 2D convolution that can be adoption to blur the input image and after that it eliminates unwanted fine information. Gaussian filter is manipulating a Kernel that is operating in convolution of an image. The amount of smoothing is determined through value of standard deviations of the Gaussian. The weighted average of neighborhood of each pixel is output values.

Edge detection

To finding the outlines or edges of an input image the edge recognition technique is used. This technique is a type of image segmentation. Determine the edges in appropriate way by using the edge detection method. The aim of acquisition boundary is to effortless the input image that one may diminish the amount of information to be processed. An edge in an image is describe the boundary pixels that bridge two different regions transition of an image amplitude. The image amplitude contains the constant luminance values as well as tristimulus value in an input image. Feature extraction from the image is more crucial in lane identification. There are many edge detection methods are available like Sobel, Canny, Robert, Marr-Hildreth. In the frequent usage of edge recognition Canny operator has good detection than others.

Lane detection

Lane detection are done by using Hough transform. Hough transform algorithm is a feature extraction approach and use to detect the line [5]. In this usage, Hough transform enforced to recognize two intent of solid lines that is left and right line. For depiction of a line for identify the lines in an input image is calculate as follows equation:

\[p = x\cos(\theta) + y\sin(\theta) \]

Where,
\(p \) = distance between the center and the line which is along of vector perpendicular to the line.
\[\theta \] = angle between of x-axis along with vector.
In this fashion, Hough transform can achieve a matrix of parameter space which are corresponds to columns as well as row of \(p \) and \(\theta \) values.

Object detection
For object detection Aggregate channel features (ACF) is used. For pedestrian and vehicle detection ACF is applied. An ACF detector is employed to achieve person window. ACF features approximation in higher layer. Due to this the no. of times the feature computation requires very less in case of ACF than traditional Histogram of Orientated Gradients (HOG). That is why it saves the computation, thus, faster. There are many datasets are available like Caltech, INRIA, ETH and TUB Brussels. These all datasets are consisting of many images that are capture by camera which are situated to vehicle. The INRIA dataset are used mainly due to its advantages. The INRIA dataset are develop by using gray scale images so the size of this dataset is small. However, computation required for performance is less. In this dataset mostly images are taken from mobile so it is easy for using IP camera.

5 EXPERIMENTAL RESULTS
In this section lane and object detection result is explore. Red and yellow lane provide information about direction like left, right and go straight. On the implementation board red holder is mounted to placing the mobile for webcam camera. That holder is freely 45-degree rotation to creating scenario of lane changing and detection of lane boundary. MATLAB environment is used for these simulations.

Lane Detection
On the empty road figure 3 is taken the notification is given is go straight and lane is detected. The lane is detected by applying Hough transform. The red colour box is indicating the lane detection. When the detection is not done then that box is green otherwise it is red in color.

Object Detection
Car is detected on the road with honking. Subsequently, Car is recognising within a range that range depends on the distance between IP camera and car. When car within a range then the detection and honking.

Fig. 3: Lane detection of empty road
In the figure 4 indicate that the rotation of camera at right side then this system displays the notification to the driver to take turn left. The system detects the car but GUI not warns the object on road due to its threshold value.

Fig. 4: Lane detection with car detection but not honking

Fig. 5: car detection with honking
In this figure 6 green colour indicate the lane and red line indicates the boundary of the lane and the pedestrian is detected which is having bounding box. This system detect pedestrian although it not show warning to the driver because person is far from the car.

Fig. 6: Person detection but no honking and Indication is going straight
According to the ADAS system, when the pedestrian near to the car then it detects and gives the notification and warning which are depends on the threshold value.
Performance Parameters

The performance parameters are mainly used as sensitivity, specificity, and accuracy. These three parameters are used to measure performance of the system. For lane and object detection, these parameters are evaluated using following relations and results are shown in Table 1. The systems shows better performance for object detection compared to lane detection.

\[
\text{Sensitivity} = \frac{TP}{TP+FN} \times 100 \quad (2)
\]
\[
\text{Specificity} = \frac{TN}{TN+FP} \times 100 \quad (3)
\]
\[
\text{Accuracy} = \frac{TP+TN}{TP+FP+TN+FN} \times 100 \quad (4)
\]

Where, TP is true positive, TN is true negative, FP is false positive and FN is false negative.

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameters</th>
<th>Lane detection (%)</th>
<th>Object detection (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sensitivity</td>
<td>95.59</td>
<td>95.22</td>
</tr>
<tr>
<td>2.</td>
<td>Specificity</td>
<td>76.92</td>
<td>75</td>
</tr>
<tr>
<td>3.</td>
<td>Accuracy</td>
<td>87.5</td>
<td>95</td>
</tr>
</tbody>
</table>

6 Conclusion

Preprocessing part consist of Gaussian filter to denoise the input image. This image is given to the Canny transform for edge detection and Hough transform is used for detection of straight line. Aggregate Channel feature (ACF) is used for the object detection like car and pedestrian. This scheme of implementation is for driverless car system. The IP camera take the snapshots of the road and then process to extract required features by using Canny and Hough transform. The left, right as well as straight direction indication is given by the IP camera. This system is also recognizing the object like pedestrian and car and also gives the notification like honking.

References

