
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 02, FEBRUARY 2015 ISSN 2277-8616

29
IJSTR©2015
www.ijstr.org

Byzantine Fault Tolerance In The Distributed
Environment Using Markov Chain Technique

R. Kalaivani

ABSTRACT: The abstract of this paper is to tolerate the byzantine fault by providing the predefined constraints of the Nodes in the distributed
environment. The nodes in the distributed environment automatically generated their constraints using Markov chain. The distributed environment
predefined constraints and the member nodes predefined constraints can be updated periodically. According to this update, if the member nodes
predefined constraints may not matches with the distributed system predefined constraints then using Breadth First Search technique the membership
service discards the service of the node in the distributed environment . The new node having constraints wants to communicate with the distributed
environment. These constraints can be compared with the distributed system constraints using probability of random matching technique.

————————————————————

1 INTRODUCTION
Byzantine fault is an arbitrary failure occurs in the
distributed environment causes heavy damage to the
system. The word “Byzantine” refers to Byzantine generals
problem which can be used in army in the past
decades[1].Byzantine problem can be tolerated only there
are 3N+1 nodes in the distributed environment[15]. For
example, Dynamo uses tens of thousands of servers
located in many data centers around the world to build a
storage back-end for Amazon’s S3 storage service and its
e-commerce platform[11,13].Byzantine fault can be
tolerated using distributed Byzantine Quorum systems
techniques to provide security in the database
storage[2,14].This Quorum system can be integrated with
protocol for proactive recovery of servers[3,18].But it cannot
be completely eradicated and also understand. By using
some techniques it can be tolerated but it is not sufficient in
the recent days. Byzantine fault tolerant algorithms will be
increasingly important in the future because malicious
attacks and software errors are increasingly common and
cause faulty Nodes to exhibit arbitrary behavior[4,19]. In
distributed system byzantine failure is used to describe the
worst possible failure semantics in which any type of error
occur[5,17]. The distributed environment uses membership
service. The membership service is used it periodically
notifies of other system nodes of membership
changes[6,16].The membership service is used
dynamically. It allows only authorized service to
communicate with this group of system in the distributed
environment[12].To reduce this byzantine fault occurred in
the distributed environment provide the predefined
constraints in the distributed system. The membership
service allows only the service with possible constraints
related to the distributed system constraints.

The predefined constraints can be automatically generated
by the system using Markov chain[7]. The probable
constraints can be analyzed with the distributed system
using random matching technique[8]. There are many set of
constraints in the system in distributed environment. These
constraints can be easily identified using searching
techniques.

2 DESIGNING THE ARCHITECTURE:
The Byzantine fault can be tolerated by using the
techniques of this paper. There should be more than three
nodes in the distributed environment. It is impossible to
tolerate the problem if 3N+1 nodes is not in the distributed
environment. There are set of predefined constraints is
used in the distributed environment. The nodes wants to
communicate with the member node of distributed system
or the node wants to join the distributed environment. The
particular node also has the predefined constraints. The
membership service checks that constraint is related to the
distributed system constraints. This comparison can be
done by random matching technique. The membership
service searches the constraints in the distributed system
using searching technique. The predefined constraints can
be generated using Markov chain.

3 UTILITIES OF MEMBERSHIP SERVICE
The membership service is used in the large scale
distributed environment. The membership service groups
the nodes in the distributed system. This membership
service checks periodically all the Node in the distributed
environment. The Node occur byzantine fault it can be
removed by the membership service. The node in the
distributed environment has a predefined set of constraints.
If any new node wants to communicate with the distributed
system, the membership service checks the new node
constraints if it matches with the distributed environment
constraints then allow the node to communicate. The
predefined constraints in the distributed system can be
generated automatically by the Node or human can give
instructions manually.

4 PROBABLE CONSTRAINTS

There are n numbered predefined constraints in the nodes
in distributed system is put into random order n!
arrangements have equal probabilities. The number of
matches in the random variable Sn has the values 0,1,2,…..
By using random matching technique[8], compare the new
node constraints and the distributed system constraints in

 R.Kalaivani, M.E.Second year, Department of
Computer Science and Engineering, Manonmaniam
Sundaranar University, Tirunelveli. Tamilnadu.
Email: kalaivani202@gmail.com

mailto:kalaivani202@gmail.com

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 02, FEBRUARY 2015 ISSN 2277-8616

30
IJSTR©2015
www.ijstr.org

the distributed environment. The probability of having m
matches is given by

 P[0]=1-1+1/2!-1/3!+…….+/-1/(N-2)!+/-1/(N-1)+/-1/N!
 P[1]=1-1+1/2!-1/3!+……+/-1/(N-2)!+/-1/(N-1)!
 .
 P[N-2]=1/(N-2)!{1-1+1/2!}
 P[N-1]=1/(N-1)!{1-1}=0
 P[N]=1/N!

In this probability there are m correct matches and N-m
incorrect matches can be arranged. The probability of
exactly m correct matches is given by

bm= N (N-1)^N-m

 m N^N

The probability of random matching technique is used to
perform the probable constraints.

5 SEARCHING TECHNIQUES:
There are several nodes in the distributed environment.
These nodes can be previously checked by the
membership service it matches the predefined constraints
in this environment and then join these nodes in the
distributed environment. These predefined constraints can
be changed periodically. Each node in the distributed
environment has also predefined constraints that
constraints also updated periodically. Suppose the newly
generated predefined constraints of the node in the
distributed environment cannot matches with the predefined
constraints in the distributed environment. The membership
service discards the node in the distributed system. For this
purpose the membership services uses breadth first
search(BFS) technique[10]. Choose any node in the
distributed environment designate it as a search node.
Determine the unvisited adjacent node for the search node.
The membership service checks all the adjacent node’s
predefined constraints. In this way the process continues
until all the nodes in the distributed environment can be
checked by the membership service. The node predefined
constraints cannot matches with the predefined constraints
in the distributed environment that node can be rejected by
the membership service.

 Node

Fig.1 Membership Service searches the node using BFS.

The features of the algorithm are the membership service
first checks there are more than three nodes in the
distributed environment, if it does not have three nodes
byzantine problem cannot be solved. So it cannot continue
the process and terminates it. Otherwisethe membership
service searches all the nodes in the distributed
environment using breadth first search technique. If any
node constraints cannot matches with the distributed
environment predefined constraints that node can be
deleted. The insertion and deletion of nodes in the
distributed environment can be performed using this
algorithm. The algorithm for searching the node in the
distributed environment using BFS technique by the
membership service is given below:

1. Initialize
Visited[]=0;
Predefinedconstraints pc;
Adjacent node v;
Node n;
Location of the node loc;

2. if(N>=3n+1) then
continue the following steps
else goto step 13

3. BFS traversal on the node is carried out beginning
at N;

4. Mark N as visited
Visited[N]=1;

5. Check visited node satisfies predefinedconstraints
6. If(Visited[N]!=pc)

{
7. Position a pointer q on (loc-1) node

i.e q=firstnode;
for(i=1;i<loc-1;i++)

Distributed Environment

Member ship

Service

1

2 3 4 5

6 7

8

9

10

11

12 13

14

15

16

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 02, FEBRUARY 2015 ISSN 2277-8616

31
IJSTR©2015
www.ijstr.org

q=q->nextnode;
8. Delete the desired node
9. Stop

} Else
10. find adjacent nodes for the beginning node N
11. if(!Visited[v])
 Mark v as visited
 Visited[v]=1;
12. process terminate until all nodes are visited
13. stop the process

This is the algorithm for adding the new node in the
distributed environment by the membership service that is
given below:

1. Acquire memory for new node with its address in
pointer p

2. Assign value to the node.
3. Position a pointer q on (loc-1) node

i.e. q=firstnode;
for(i=1;1<(loc-1);i++)
q=q->nextnode;

4. Insert the node after the pointed by q
5. Stop the process.

6 NODE GENERATED CONSTRAINTS
The node generated constraints can be periodically
changes. The new fault can be tolerated by the recently
updated predefined constraints. The predefined constraints
generated depends on previously generated constraints
existed for the last two days and not on past predefined
constraints[9]. This technique can be used by Markov
chain. The recently developed constraints is in the state i,
there is a fixed probability Pij that will be future constraints
in state j.

P{Xn+1=j/Xn=i,Xn-1=in-1………,X1=i1,X0=i0}=Pij

For all states i0,i1,……..in-1,i,j and all n>=0.Such a process
is known as Markov chain[7]. Let p denote the matrix of one
step transition probability Pij so that

P= P00 P01 P02…

P10 P11 P12….
. . . .
.. . .

Pi0 Pi1 Pi2…

If the constraints generated recently, it can be used in the
past α and if the constraints generated recently, it cannot
be used in the past β. The one step transition probability is
given by

 P= α 1-α

 β 1-β

The one step transition probability is defined. The n-step
transition probability is given by

Pij=P{Xn+m=j/Xm=i},n>=0,i,j>=0}

The chapman-kolmogorov equation provides a method for
computing these n-step transition probabilities.These
equations are

Pij^(n+m)=∑ Pik^n Pkj^m for all n,m>=0 for all i,j

Let p(n) denote the matrix of n-step transition probabilities
Pij^n then

 P^(n+m)=P^n P^m

The predefined constraints can be updated periodically by
using Markov chain.

7 SIMULATION
Let us assume that the probability of newly generated
constraints used the past prefined constraints, α=0.7 and
the newly generated constraints cannot be used the past
constraints, β=0.4, to find the probability that the newly
generated constraints can be used the past 16 days
constraints.

P= .7 .3
.4 .6

Probability of generated predefined constraints for past two
days

P^2= .7 .3 .7 .3
 .4 .6 .4 .6

= .61 .39

 .52 .48

P^2=0.6100

Probability of generated predefined constraints for past four
days

P^4= .61 .39 .61 .39

 .52 .48 .52 .48

P^4=0.5749

The tabulated results for the probability of generating
predefined constraints using past constraints.

The graphical representation of the probability of generating
predefined constraints using the past constraints is

Probability of generated
predefined constraints
for past days

P^2 P^4 P^4 P^16

Probability obtained 0.6100 0.5749 0.5714 0.4286

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 02, FEBRUARY 2015 ISSN 2277-8616

32
IJSTR©2015
www.ijstr.org

Using the predefined constraints the membership service
decides which node can be inserted or deleted. This can be
performed using the algorithm is given in the section 4. The
random matching technique is used to find the probability of
m correct matches in the constraints in distributed system.
The tabulated results are presented below.

 N=3 N=4 N=5 N=6 N=10

Probability of
m matches
[pm]

0.333 0.375 0.367 0.368 0.369

Probability of
exactly m
matches [bm]

0.296 0.316 0.328 0.335 0.348

The graphical representation for the probability of correct
matches in the distributed environment is

8 CONCLUSION AND FUTUREWORK
The byzantine fault can be tolerated by providing the
predefined constraints in the distributed environment. The
constraints can be automatically generated by the node is
performed by using Markov chain. By providing the
searching techniques the constraints can be searched in
the nodes of the distributed system using membership
service. The new node constraints and the nodes of the
distributed system constraints can be easily compared and
the probable constraints can be easily identified by
probability of random matching technique. The future work
of this paper is that the new node without create fault in the
distributed environment is requested to join in the
environment but this constraints is not matched in the
nodes of the distributed system constraints that node is
rejected. So the future work is to create the new correct
constraints in the distributed environment automatically.

REFERENCES
[1] L.Lamport,R.Shostak and M.Pease. The Byzantine

Generals Problem.ACM Transactions on
Programming Languages and Systems,4(3),1982.

[2] R.Kalaivani. Byzantine Fault Tolerance using

distributed Quorum Systems. Proceedings of
National Conference on Recent Trends in
Advanced Computing in Manonmaniam
SundaranarUniversity,Tamilnadu,India,2013.

[3] 3.Eduardo A.P.Alchieri,Alysson Neves

Bessani,Fernado Carlos Pereira and Jonida Silva
Fraga. Proactive Byzantine Quorum Systems.
Brazil University of Lisban.

[4] M. Castro and B. Liskov, “Practical Byzantine Fault

Tolerance,”Proc. Third Symp. Operating Systems
Design and Implementation(OSDI ’99), Feb. 1999.

[5] George Couloris,Jean Dollimore and Tim

Kinderberg. Distributed Systems, Fourth Edition,
pg.no.51,461-466.

[6] Barbara Liskov and Moses Liskov. Automatic

Reconfiguration for Large Scale Reliable Storage
Systems. IEEE Transactions on dependable and
secure computing, VOL. 9, NO. 2, MARCH/APRIL
2012.

[7] Sheldon M.Ross. Introduction to Probability

Models, Fourth Edition, pg.no.135-140.

[8] Feller. An Introduction to Probability Theory and its
Applications, Third Edition,VOL.1, pg.no.107-109.

[9] Dr.A.Singaravelu and Dr.S.Sivasubramanian.

Probability and Queueing Theory, pg.no.3.36-3.39.

[10] P.Revathy,S.Poonkuzhali. Data Structures,
Pg.No.7.10-7.13.

[11] G. DeCandia, D. Hastorun, M. Jampani, G.

Kakulapati, A.Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W.Vogels,
“Dynamo: Amazon’s Highly Available Key-Value
Store,”Proc. 21st ACM Symp. Operating Systems
Principles, pp. 205-220,2007.

[12] J. Dean,, “Designs, Lessons and Advice from

Building LargeDistributed Systems,”Proc.Third
ACM SIGOPS Int’l WorkshopLarge Scale
Distributed Systems and Middleware (LADIS ’09),
Keynotetalk, 2009.

[13] Amazon S3 Availability Event,

http://status.aws.amazon.com/s3-20080720.html,
July 2008.

[14] K. Birman and T. Joseph, “Exploiting Virtual

Synchrony inDistributed Systems,” Proc. 11th ACM
Symp. Operating SystemsPrinciples, pp. 123-138,
Nov. 1987.

0

0.2

0.4

0.6

0.8

0 2 4 6

Series1

Series2

Series3

0

0.1

0.2

0.3

0.4 Probability
of m
matches
[pm]

Probability
of exactly m
matches
[bm]

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 02, FEBRUARY 2015 ISSN 2277-8616

33
IJSTR©2015
www.ijstr.org

[15] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and

H.Balakrishnan, “Chord: A Scalable Peer-to-Peer
Lookup Servicefor Internet Applications,” Proc.
ACM SIGCOMM, 2001.

[16] M. Reiter, “A Secure Group Membership Protocol,”

IEEE Trans.Software Eng., vol. 22, no. 1, pp. 31-
42, Jan. 1996.

[17] H.D. Johansen, A. Allavena, and R. van Renesse,

“Fireflies:Scalable Support for Intrusion-Tolerant
Network Overlays,” Proc.European Conf.
Computer Systems (EuroSys ’06) , pp. 3-13, 2006.

[18] J. Cowling, D.R.K. Ports, B. Liskov, R.A. Popa, and

A. Gaikwad,“Census: Location-Aware Membership
Management for Large-Scale Distributed Systems,”
Proc. Ann. Technical Conf. (USENIX’09), June
2009.

[19] D. Oppenheimer, A. Ganapathi, and D.A.

Patterson, “Why DoInternet Services Fail, and
What Can Be Done About It?” Proc.Fourth USENIX
Symp. Internet Technologies and Systems (USITS
’03),Mar. 2003.

