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The Sol-Gel Process 

 
Khalid Suliman Aboodh 

 
Abstract: An increasingly important application of liquid jets is the disintegration of the jet to form droplets of liquid containing nuclear fuel. These 
droplets are then dried and sintered to form ceramic micro spheres for use in fuel elements in nuclear reactors. The total operations required to 
form the droplets, convert them to solids, and fire them to ceramic bodies comprise what are known as Sol-Gel processes (Reference [13]). 
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1 INTRODUCTION 
The sol is an aqueous solution containing the metal (uranium 
or plutonium) to be as nuclear fuel. This solution is dispersed 
as droplets into an organic liquid drying agent (commonly 2-
ethy1-1-hexanol or isoamyl alcohol) which removes the water 
from the sol, thus gelling the drops of sol into tiny spheres. The 
final step is to dry and fire the spheres. A number of 
techniques to form the sol droplets have been studied 
(Reference [5]). Figure 1 illustrates three of the more common 
techniques. With the shear nozzle, the sol issues from a 
capillary at right angles to the drive fluid column, where it is 
sheared from the capillary to form droplets. The major forces 
in this technique are shear and inertia. In the two-fluid nozzle 
system the sol, issuing from a capillary as a jet, is accelerated 
and finally broken up by a drive fluid. Interfacial tension, shear, 
and gravity are the major forces at play. In the vibrating 
capillary technique, the capillary from which the sol issue is 
vibrated while immersed in the drying agent. The drops of sol 
are essentially shaken off from the end of the capillary. The 
vibrating capillary technique has given good results, but only 
over a limited range of sol drop diameters. The shear nozzle 
technique is useful in producing micro spheres below the 200-
micron-diameter range (Reference [6]), the lower end of the 
spectrum of useful micro sphere sizes, but the micro sphere 
size is not very uniform. The two-fluid nozzle, on the other 
hand, has been shown to produce the best uniformity in 
sphere sizes over the widest  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1 Droplet Formation Techniques 
 

Range of sphere sizes. In the range of 200-to 2000-micron-
diameter droplets, two fluid nozzles have given 90 percent by 
weight of the droplets within 15 percent of the mean 
diameter .modern developments incorporate a vibrator with the 
two fluid nozzle (Reference [7])for improved uniformity of drop 
size. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. fired Urania Microspheres from the Sol-Gel Process 
 
Figure 2 is a photograph of fired urania micro spheres formed 
by No turbulent operation of two nozzle system. The degree of 
sphericity is quite apparent. Note also the absence of satellites 
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in this particular case. These appear as the operation 
becomes turbulent. (See for example, Reference [5]). 
Consider the case of the driven jet as in figure 1, in which the 
shear forces ominate. The shearing of the sol jet stream by the 
drive fluid may be approximated by equation  
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When this shear stress principally determines the sol jet 
surface velocity, we have, from equation  
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Where s  is the viscosity of the sol. Substituting equation 

 1 into  2 Gives  
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Neglecting radial velocity gradients in the sol stream, the 
volumetric flow rate of the sol is given as  
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When ( ) ,ct z t the jet radius at breakup, equation 

 4 yields  
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From simple conservation of pressure in the sol stream, to a 
first approximation the radius of the (spherical) droplet formed 
is  
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Table 1: Physical Quantities Involved in Determining Drop 

Size 
 

Property 
Symb
ol  

Units 
Fundament
al Units  

1. Droplet radius 0R  m  L  

2.Sol absolute viscosity s  
/( )(sec)kg m

 

/M LT
 

3.Drive fluid absolute 
viscosity  

D
 

/( )(sec)kg m
 

/M LT
 

4.Sol volumetric flow rate F  3 / secm  
3 /L T  

5.Velocity of drive fluid 0W  /secm  /L T  

 
A simpler, but less satisfying, approach to such a relationship 

as equation  6  is to assume that by the time of breakup, 

the sol stream velocity has essentially attained the drive fluid 

velocity 0W . Then equation  4 becomes  
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For the case in which the sol viscosity is similar to that of the 

drive fluid equations  6 and  8 appear to bracket the 

experimental results, given by an early correlation (Reference 
[9])  
 

 0
0

4
1.2 9

F
R

W
    

Obviously an exact theoretical treatment of the two-fluid 
nozzle for the Sol-Gel process is indeed a complex one. 
However, as for jet breakup length, the relationship between 
the variables may be explored by use of dimensional analysis. 
Consider the droplet size to depend on the variables given in 

equation 6 . One may then make the following tabulation of 

the number of physical quantities involved is 5n  . These 

depend on only three fundamental units: M , L, T ,so that 

3r  . We may therefore expect ( ) 2n r   

Dimensionless grouping ( terms). The problem is assumed 

to Be of the form 
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Since  is a dimensionless quantity, the exponents must be 

zero. Hence  
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We have three equations in five unknowns, so that two 
unknowns may be chosen arbitrarily provided that they are 
independent of the others. As mentioned previously, the 
independency is established if the determinant of the 
coefficients of the remaining terms dose not vanish. 
 
First solution 

Since we desire 0R  to appear as a function of the other 

variables, it is logical to choose 1a  As agues also 

choose 0b  . Then equations 14 become 
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Which has solution 0c  , 1
2

d    and 1
2

e  . To 

check for validity of the assumptions on the exponents, we 
must have the determinant is 
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Hence our assumptions are valid. The first dimensionless 

grouping 1 is thus established from equation  12 as  
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Second solution 

If viscosities are to appear at all, then we must try 1b  . 

Since 1 contains 0R already, it is logical to take 0a   for 

the second solution. Then equations  14 become 
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Which has solution 1c   , 0d   and 0e  . The 

second dimensionless grouping is thus established from 

equation  12  
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Thus from equation  11  

 

 0 , 0 18s
o

D

W
R

F






    
    

    

   

 
The simplest functional relationship one might assume is  
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Where k and x are constants to be determined 

experimentally. Rearranging equation  19  
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We obtain the form of equation  6 where 

4k  and
1

2
x  . 

 

A more general relationship than equation  19 may be 

obtained by including additional variables such as the 

densities of the sol and drive fluids, s and D respectively, 

and the geometry of the drive fluid flow channel. The results 
(Reference [5]) may be expressed in the form 
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Where R is the radius of the drive-fluid flow channel, G is the 

volumetric flow rate of the drive fluid, and Res and ReD are 

the Reynolds numbers for the sol and for the drive fluid, 

 Rei i i i iD V   , where iD is the diameter of the 

ith fluid stream and iV is its velocity. From experimental data, 

equation  21 has been evaluated as (Reference [5])  
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Where 0a z  . This correlation is valid for 

Re 1000D  and for laminar flow. Note the recovery of the 

theoretically derived exponent for the dependency on 
viscosities. 
 

The general solution of  14  
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Then  
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Then b k ,c k   

 

Conclusion  
In the dimensional analysis. A general solution of equation 

 14 was obtained showing all the possible solutions of the 

dimensional analysis method 
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