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Abstract: The digital transformation of companies and organizations leads to an evolution of databases towards Big Data. Our work is part of this 
transformation and concerns more specifically the mechanisms for processing semantic data stored on a Hadoop Big Data or NoSQL platform. 
Generally, for querying semantic Web data we have to use SPARQL language, and Big Data languages like Apache Spark, are not dedicated to 
processing this type of data. In this paper, we present a new model engineering approach for analyzing and transforming complex SPARQL queries into 
Spark scripts. To automate this transformation process, we used the MDE approach that provides a formal framework for the transformation and 
mapping mechanisms between two languages. From a SPARQL metamodel, we propose transformation rules to generate, in fine, a Spark script 
intended for a Hadoop / NoSQL platform. We introduce a logic level intermediate schema to limit the impact of Spark releases. An experimentation of the 
transformation process was carried out on three RDF databases. 
 
Index Terms: Big Data, Semantic Web, SPARQL, RDF, Spark.   

——————————      —————————— 

 
1 INTRODUCTION                   

Hanks to the efforts of the World Wilde Web Consortium 
community, the information available on the web can be 
processed automatically by machines, not by humans. The 
idea is to make the Web intelligent, where information will no 
longer be stored but understood by machines to provide users 
with relevant answers. Several languages have been 
developed as part of the Semantic Web and most of these 
languages are based and use XML syntax. The OWL and RDF 
are the most important languages of the Semantic Web, they 
are based on XML. RDF increases the ease of automatic 
processing of web resources. The RDF is the first W3C 
standard for enriching web-based resources with detailed 
descriptions. Descriptions can be characteristic of resources, 
such as the author or the content of a website. These 
descriptions are metadata. Enriching the Web with metadata 
allows the development of what is called the Semantic Web. 
RDF is also used to represent semantic graphs corresponding 
to a specific knowledge modeling. SPARQL is the standard 
language for querying semantic graphs, this solution is not 
suitable for large semantic graphs. In this paper, we present a 
new model engineering approach for analyzing and 
transforming complex SPARQL queries into Spark scripts. We 
then analyze theoretically the efficiency of our method, and we 
calculate the dominant parameters of the system. Finally, we 
implement the whole system on the Big Data platform using 
data from LUBM Benchmark [1], DBpedia [2], and SP2Bench 
[3]. In the next section, we discuss previous work in the 
literature and then clarify our purpose and the tools used, and 
present our system in section 3, our system is evaluated in 
section 4. Finally, the discussion in section 5. 

 
2   RELATED WORK 
Several previous works used Big Data technologies for 
Semantic Web data management such as: RDFMongo [4] it is 
a complete RDF data management solution based on the 
MongoDB database, in this solution the data is stored in 
MongoDB, and for querying this data the user request written 
in SPARQL will be translated into a program of MongoDB 
query Language, Our second system [5] is an approach based 
on the principle of metamodels, it allows the processing of 
Complex SPARQL queries using a Big Data Query Tool called 

Hive. We also find a system based on Apache Spark [6] to 
handle large volumes of RDF data. Other research works like 
[7] and [8] are comparative studies and surveys of semantic 
Web systems based on Big Data tools. Big data and its 
processing tools are developing rapidly, reaching and affecting 
more and more domains. Skourletopoulos et al. [9] and 
Hashem et al. [10] explored the opportunities, challenges, and 
techniques of Big Data and their relationship with cloud 
technologies, such as Big Data-As-A-Service. Besides, they 
identified some data analysis challenges such as scalability, 
availability, data integrity, and data transformation. Li et al. [11] 
gave an overview of the techniques and systems used for Big 
Data storage and resource management such as Distributed 
File System, Distributed Databases, Access Interface, and 
Query Language. They also briefly presented three main 
problems in this area: 

 Large scale storage. 

 The management complexity caused by the 
heterogeneity of the data. 

 The requirement in terms of performance and 
reliability of storage. 

 Improving the query index in distributed systems. 

 Storage and processing in real-time and streaming of 
Big Data. 

 Complex event processing. 
 
To highlight the challenges of storage, Begoli [12] published a 
state-of-the-art review of architectures and platforms for large-
scale data analysis and knowledge discovery from Data. 
Mazumder [13] exposed concepts, common techniques, and 
models in Big Data such as storage and service management 
as well as the Hadoop ecosystem. They also proposed 
implementations, use cases (data ingestion, data mining, 
information creation, data consumption, archiving and data 
purging) and mapping them to various Big tools and platforms. 
data. The process of extracting data is as important as the 
data itself. Thus, the need to analyze and qualify data 
collected from various sources is one of the main drivers of 
Big Data analysis tools. For this, several contributions have 
been made to discuss and propose improvements to current 
analysis techniques. As one of the main success factors of Big 
Data is the ability to manage constraints in real-time, Liu, 

T 
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Iftikhar and Xie [14], Zheng et al. [15] and Mohamed and Al-
Jaroodi [16] have addressed this topic by providing an 
overview of the current state of the tools that can handle Big 
Data. Liu, Iftikhar, and Xie [14] presented an analysis of open 
source real-time processing technologies with a focus on real-
time architectures. Zheng et al. [15] discussed the challenges 
of Big Data and in particular those of real-time processing. 
They also presented a multilevel storage model and some 
deployment methods to meet Big Data requirements in real-
time and heterogeneity. Mohamed and Al-Jaroodi [16] 
presented some technical challenges to real-time applications 
in Big Data. Also, they provided a performance analysis and 
some Big Data requirements in real-time. Other researchers 
have focused on the comparison of Big Data processing tools. 
Indeed, Lopez, Lobato, and Duarte [17] have described, 
analyzed and compared three main open-source distributed 
flow processing platforms such as Spark, Flink, and Storm. 
They provided experimental performance results focused on 
throughput and parallelism in a threat detection application in 
network traffic. In a study conducted by Lu et al. [18], a 
repository of modern distributed flow calculation frameworks is 
proposed. This benchmark covers performance, fault recovery 
capacity and sustainability of Big data frameworks. 
Nevertheless, this study provides a result only for Storm and 
Spark. Hess et al. [19] proposed an overview and a 
comparison of four flow processing platforms, one platform 
more (Samza) than the study conducted by Lopez, Lobato, 
and Duarte [17]. However, the comparison is based only on 
the architecture and the responsibilities of the system 
components and does not allow to conclude to superiority in 
terms of efficiency. In a study by Lu et al [18], a benchmark 
based on error recovery capability as well as sustainability for 
modern distributed flow computing tools is presented. The 
paper provides a set of comparison results between Storm and 
Spark. Liu, Iftikhar, and Xie [14] presented real-time/near real-
time open-source processing technologies while focusing on 
their architectures and platforms. Yadranjiaghdam, Pool, and 
Tabrizi [20] presented tools for real-time analysis of big data 
and classified different studies according to the tools used and 
the type of application. They focused on applications related to 
surveillance, the environment, social media, and health care. 
Tsai et al. [21] discussed solutions for large data analysis. 
Besides, they exposed some research directions and 
questions about open techniques and platforms in this area of 
research. Gong, Morandini, and Sinnott [22] proposed a 
benchmarking and implementation of SMASH, a generic and 
highly scalable Cloud solution, for processing large-scale 
traffic data. Katal, Wazid, and Goudar [23] compared three 
frameworks (Storm, Hadoop, Drill) through the following 
characteristics: owner, workload, source code, low latency, 
and complexity. Also, the issues and challenges of managing 
Big Data were discussed. In the study by Almeida and 
Bernardino [24], the authors compared six open source Big 
Data platforms: Apache Mahout, MOA, Project R, Vowpal 
Wabbit, and GraphLab, according to the programming 
paradigm and programming language. interface, type of data 
and algorithms supported. Urmila [25] introduced and 
compared Hive, Pig, and MapReduce for Big Data analysis. 
The comparison is based on the type of language, the user 
interface, the available algorithms and the scale of data 
supported in each tool. Some research has focused on NoSQL 
(Not Only Structured Query Language). Indeed, Corbellini et 
al. [26] compared NoSQL storage systems based on their 

types (key-value, column, document, and row databases). The 
comparison is based on API, language and persistence. 
Nevertheless, it does not allow us to choose the database 
adapted to the application needs. This study covers more 
NoSQL databases than other studies such as the one 
conducted by Dede et al. [27]. However, Moniruzzaman and 
Hossain [28] covered fewer NoSQL databases than Corbellini 
et al. [26] but cited more comparison attributes such as 
integrity (atomicity, consistency, isolation, durability ...), 
indexing (geospatial index, secondary indexes) and 
distribution (replication, scalability horizontal ...). It is important 
to note that Hadoop is not the only attractive platform for Big 
Data, there is also Apache Spark. While both tools are 
sometimes considered competitors, it is often accepted that 
they work even better when combined. Apache Spark has 
become increasingly suited as a high-level project for Big Data 
analysis, so many research tends to focus on improving it. For 
example, Gulzar et al. [29] created a tool called BigDebug that 
provides real-time interactive debug primitives for massive 
data processing in Spark. NetSpark, an improved Spark 
framework is introduced by Li, Chen, and Xu [11]. This 
Framework reduces the execution time of a Spark task by 
combining network buffer management, hardware-supported 
Remote Direct Memory Access (RDMA) technology, and 
optimization. Serialization of the data. A strategy, called MPTE 
(Multiple Phases Time Estimation), was presented by Yang et 
al. [30] to reduce the impact of "straggler machines". In 
addition, the scheduling of backup tasks has been improved 
by designing a new task scheduler. Spark uses a fast 
calculation in memory to process the data. However, in-
memory processing can cause a problem of volatility, failure, 
or lack of a Resilient Distributed Datasets (RDD) that will 
cause Spark to recalculate all the missing RDDs on the 
lineage. A long lineage will also increase the cost in time and 
the use of the driver's memory analyzing the lineage. For this, 
Zhu, and Hu [31] presented an automatic checkpoint algorithm 
to solve Spark's "long lineage" problem with little impact on 
overall performance. Other studies have designed new Spark-
based frameworks to make big data analysis more powerful. 
For example, Yan et al. [32] designed TR-Spark to deal with 
transient resource issues. This framework can run as a 
secondary background on transient resources and makes 
Spark-based applications more efficient. The design of this 
new framework is based on two principles: the stability of 
resources and the planning of the reduction of the size of the 
data. The combination of these principles allows TR-Spark to 
adapt to the stability of the infrastructure. To better make 
business decisions, Park et al. [33] relied on Spark to provide 
a goal-oriented Big Data analytics framework. The latter was 
experienced on the shipping decision.  

 
3 SYSTEM ARCHITECTURE 
In this section, we present the architecture of our system, this 
architecture which consists of three parts the first is the 
proposal of a SPARQL Metamodel, the second is to propose 
also a Metamodel is the Spark Metamodel, and in the third part 
we realize a transformation between these two meta-models 
using a transformation language called QVT (Query View 
Transformation) [34]. A  SPARQL query Q that conforms to the 
SPARQL metamodel will be transformed/mapped into a Spark 
script S, this Spark script conforms to the Spark metamodel. 
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Figure 1 illustrates the architecture of our system, as well as 
the relationships between models and metamodels. 
 

 
 

Fig.1 System Architecture 
 
3.1 SPARQL metamodel 
In particular, SPARQL does not have a FROM construct to 
define the relations we are going to query. By default, any 
relation present in the database can be queried. A 
"relationship" does not have to be declared explicitly and can 
be any URI. SPARQL is therefore by default much more open 
than SQL, since we are not limited to using the resources 
defined in our database instance. SPARQL [35] is the 
language recommended by the W3C for querying RDF 
graphs. SPARQL 1.0 is the first recommendation for querying 
RDF data. It defines requests of the form SELECT, ASK, 
DESCRIBE and CONSTRUCT. A query of the form SELECT 
returns the list of variable associations of the query to 
resources or literals for which there is a matching of the 
WHERE clause graph of the query with the RDF graph 
queried. A SPARQL query of the ASK form makes it possible 
to ask boolean response requests on an RDF graph; it allows 
to ask if a pairing exists between the query graph and the RDF 
graph; it controls the search for a match between the graph of 
its WHERE clause and the RDF graph questioned. A SPARQL 
query of the form CONSTRUCT produces a new RDF graph 
by replacing the variables of the graph of the CONSTRUCT 
clause with the values for which the query graph of the 
WHERE clause matches with the RDF graph queried. A 
SPARQL query of the DESCRIBE form makes it possible to 
request the RDF description of a resource present in the 
stored RDF data; its result is a set of RDF triples describing 
the targeted resource. The WHERE clause of the SPARQL 
queries of the form SELECT, ASK or CONSTRUCT contains a 
graph pattern constructed as a conjunction of triples where a 
variable can take the place of a resource or a literal. It can also 
be a union of graphs, some parts of the query graph can be 
declared optional, filters can be applied to the solutions of a 
pairing: 

 A UNION B brings together the solutions of graphs A 
and B; 

 A OPTIONAL B makes it possible to return the 
solutions of A, whether there is a solution with B or 
not; 

 A FILTER B makes it possible to restrict the solutions 
of A using a Boolean expression B. 

 Operators make it possible to modify the sequence of 
the solutions: 

 DISTINCT eliminates duplicates; 

 ORDER BY allows you to sort the solutions; 

 LIMIT allows cutting the number of solutions by 
limiting the number of returned solutions; 

 OFFSET allows cutting the number of solutions by 
indicating to begin the solutions generated after the 
indicated number of solutions. 

Figure 2 shows our proposed SPARQL metamodel. 
 

 
 

Fig.2 System Architecture 
 
3.1 Spark metamodel 
In this section, we present our Spark metamodel proposition 
shown in Figure 3. A Spark package is composed of Spark 
models, and a Spark Classifier can be either a Spark Class or 
a Spark Interface. A Spark Bihavioral is composed of Spark 
Parameters and Blocks, the blocks can contain one or more 
instructions. 
 

 
 

Fig.3 Proposed Spark metamodel 
 
3.3 Transformation 
The transition between the different models presented before 
is done through the execution of transformations. To transform 
a model SPARQL to model Spark, we have to use a 
transformation language such as ATL [36], and QVT [37]. ATL 
is an open-source language, widely used in the industry. Its 
implementation is robust and powerful. But ATL is not a norm. 
Its competitor has the advantage of being a standard of the 
OMG Object Management Group, the organization that has 
notably made UML, MDA,... This is QVT (Query View 
Transform). QVT allows you to normalize a way to express 
correspondences (transformations) between languages 
defined with MOF (Meta Object Facility). This language 
provides mechanisms for expressing Queries (Query Q) to 
filter and select elements of a model (including selecting the 
source elements of a transformation), and to propose a 
mechanism for creating views (Views V) that are models 
deduced from another to reveal specific aspects. It also allows 
formalizing a way of describing transformations 
(Transformations T). There are two types of QVTs: QVTd 
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(declarative, QVTr Relation and QVTc Core), equivalent to the 
ATL "matched rules" and QVT Operational (imperative), 
equivalent to "called rules" ATL. The QVT language could be 
the ultimate "solution" for transforming models. Only here, as 
very often in the standards, QVT suffers from a great 
complexity. The QVTo version starts to be implemented while 
QVT-Relation is in the embryonic state. Figure 4 below shows 
a simple example of QVT code. 

 

 
 

Fig.4 Part of QVT code 

 
4    EXPERIENCE & VALIDATION 
For the validation of our approach, we realize experiments 
using our system, we also give a comparison of the results 
obtained with the two famous existing systems Sesame and 
Jena. 
 
4.1   Configuration and Test Environment 
We describe in this section the configuration of the test 
environment and tools used, we performed two tests, the first 
on a single machine mode of 4TB disk storage and 16GB 
RAM storage, the second test on a Distributed mode this 
cluster of three server disk storage 4TB disk storage and 
16GB RAM storage. Our experiments are based on three 
different datasets: LUBM Benchmark, DBpedia, and 
SP2Bench. For tools: use Apache Spark 2.4.3, with Hadoop 
version 3. Apache Jena version 3.12.0. and for Sesame, we 
used the Sesame API 2.x. the Sesame API for handling RDF 
in Java program requires the recovery of several JAVA JARs. 
The Java code example below: Figure 5 illustrates initializing a 
Repository, loading RDF data, writing RDF to a file, and 
querying a remote Sesame server or public SPARQL endpoint. 
 

 
 
 

Fig. 5 MapReduce JAVA code example for initializing a 
Repository, loading RDF data, and writing RDF to a file and 

querying a Sesame server. 
 

4.2   Experiments results 
In this section, we present the results of experiments 
conducted on three Benchmark LUBM, DBpedia, and 
SP2Bench. Figure 6 illustrates the execution time result of a 

SPARQL query on a centralized mode of a single server and 
figure 7 presents the result of the execution time of this 
SPARQL query on a distributed mode (cluster of servers). In 
the figures our system is named Big DataSW. 
 

 
 

Fig. 6 Runtime on one machine 
 

 
 

Fig. 7 Runtime on a cluster of distributed machines 

 
5  DISCUSSION 
We analyze these results; we can notice that there is a 
difference between the centralized mode (a single machine) 
and the distributed mode (cluster of the machines). The three 
solutions: Sesame, Jena, and our systems give similar results 
for running on a single server. But for the distributed mode we 
notice the big difference between the three systems, Our 
system reduces the execution time of a SPARQL query for the 
three datasets used in this experiment LUBM, DBpedia, and 
SP2Bench. Thanks to the use of Spark, the execution time of 
complex SPARQL queries using our system has been 
reduced, the answers are optimal at the join level because our 
system uses an indexing scheme that is transformed directly 
from the SPARQL query, this query that conforms to our Spark 
metamodel. Another very important factor is that Spark is more 
than 100 times very fast than MapReduce, so executing a 
Spark script will be very fast due to the execution of a 
MapReduce Job. To validate the choice of Spark, we found 
that the method used by Spark to process the data makes it 
much faster than MapReduce. While MapReduce works in 
stages, Spark can work on all data at one time. The 
MapReduce Job Sequence looks like this: it reads the data at 
the cluster level, it executes an operation, writes the results at 
the cluster level, reads the cluster-level updated data again, 
executes the cluster next operation, he writes the new results 
at the cluster level, and so on. On the contrary, Spark performs 
all data analysis operations in memory and near real-time. 
Spark reads the data at the cluster level, performs any 
necessary analysis, writes the results at the cluster level. It is 
important to note that Spark can run on several file and 
database systems, including HDFS (Hadoop Distributed File 
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System) [38]. Spark is a step ahead of MapReduce because it 
handles most of its operations in memory, copying datasets 
from a physical storage system to much faster RAM. For its 
part, MapReduce [39] writes and reads data from the hard 
disk. If disk access can take several milliseconds to access 1 
MB of data, the data access rates in memory go below the 
millisecond. Another advantage of Spark on MapReduce, its 
relative ease of use and its flexibility. Finally, to conclude, the 
fundamental difference between Hadoop MapReduce and 
Spark is that Spark writes data in RAM, not on disk. This has 
several important consequences on the speed of calculation 
processing as well as on the global architecture of Spark. 

 
6   CONCLUSION 
Big Data technologies are capable of handling large volumes 
of data, but are not dedicated to managing semantic web data 
that is typically stored in RDF standard format. To query this 
data we must use the SPARQL querying standard. In this 
paper, we present a new model engineering approach for 
analyzing and transforming complex SPARQL queries into 
Spark scripts. To automate this transformation process, we 
used the MDE approach that provides a formal framework for 
the transformation and mapping mechanisms between two 
languages. 
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