
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

4732
IJSTR©2020
www.ijstr.org

A Big Data Solution To Process Semantic Web
Data Using The Model Driven Engineering

Approach

Mouad Banane, Abdessamad Belangour

Abstract: The digital transformation of companies and organizations leads to an evolution of databases towards Big Data. Our work is part of this
transformation and concerns more specifically the mechanisms for processing semantic data stored on a Hadoop Big Data or NoSQL platform.
Generally, for querying semantic Web data we have to use SPARQL language, and Big Data languages like Apache Spark, are not dedicated to
processing this type of data. In this paper, we present a new model engineering approach for analyzing and transforming complex SPARQL queries into
Spark scripts. To automate this transformation process, we used the MDE approach that provides a formal framework for the transformation and
mapping mechanisms between two languages. From a SPARQL metamodel, we propose transformation rules to generate, in fine, a Spark script
intended for a Hadoop / NoSQL platform. We introduce a logic level intermediate schema to limit the impact of Spark releases. An experimentation of the
transformation process was carried out on three RDF databases.

Index Terms: Big Data, Semantic Web, SPARQL, RDF, Spark.

——————————  ——————————

1 INTRODUCTION

Hanks to the efforts of the World Wilde Web Consortium
community, the information available on the web can be
processed automatically by machines, not by humans. The
idea is to make the Web intelligent, where information will no
longer be stored but understood by machines to provide users
with relevant answers. Several languages have been
developed as part of the Semantic Web and most of these
languages are based and use XML syntax. The OWL and RDF
are the most important languages of the Semantic Web, they
are based on XML. RDF increases the ease of automatic
processing of web resources. The RDF is the first W3C
standard for enriching web-based resources with detailed
descriptions. Descriptions can be characteristic of resources,
such as the author or the content of a website. These
descriptions are metadata. Enriching the Web with metadata
allows the development of what is called the Semantic Web.
RDF is also used to represent semantic graphs corresponding
to a specific knowledge modeling. SPARQL is the standard
language for querying semantic graphs, this solution is not
suitable for large semantic graphs. In this paper, we present a
new model engineering approach for analyzing and
transforming complex SPARQL queries into Spark scripts. We
then analyze theoretically the efficiency of our method, and we
calculate the dominant parameters of the system. Finally, we
implement the whole system on the Big Data platform using
data from LUBM Benchmark [1], DBpedia [2], and SP2Bench
[3]. In the next section, we discuss previous work in the
literature and then clarify our purpose and the tools used, and
present our system in section 3, our system is evaluated in
section 4. Finally, the discussion in section 5.

2 RELATED WORK
Several previous works used Big Data technologies for
Semantic Web data management such as: RDFMongo [4] it is
a complete RDF data management solution based on the
MongoDB database, in this solution the data is stored in
MongoDB, and for querying this data the user request written
in SPARQL will be translated into a program of MongoDB
query Language, Our second system [5] is an approach based
on the principle of metamodels, it allows the processing of
Complex SPARQL queries using a Big Data Query Tool called

Hive. We also find a system based on Apache Spark [6] to
handle large volumes of RDF data. Other research works like
[7] and [8] are comparative studies and surveys of semantic
Web systems based on Big Data tools. Big data and its
processing tools are developing rapidly, reaching and affecting
more and more domains. Skourletopoulos et al. [9] and
Hashem et al. [10] explored the opportunities, challenges, and
techniques of Big Data and their relationship with cloud
technologies, such as Big Data-As-A-Service. Besides, they
identified some data analysis challenges such as scalability,
availability, data integrity, and data transformation. Li et al. [11]
gave an overview of the techniques and systems used for Big
Data storage and resource management such as Distributed
File System, Distributed Databases, Access Interface, and
Query Language. They also briefly presented three main
problems in this area:

 Large scale storage.

 The management complexity caused by the
heterogeneity of the data.

 The requirement in terms of performance and
reliability of storage.

 Improving the query index in distributed systems.

 Storage and processing in real-time and streaming of
Big Data.

 Complex event processing.

To highlight the challenges of storage, Begoli [12] published a
state-of-the-art review of architectures and platforms for large-
scale data analysis and knowledge discovery from Data.
Mazumder [13] exposed concepts, common techniques, and
models in Big Data such as storage and service management
as well as the Hadoop ecosystem. They also proposed
implementations, use cases (data ingestion, data mining,
information creation, data consumption, archiving and data
purging) and mapping them to various Big tools and platforms.
data. The process of extracting data is as important as the
data itself. Thus, the need to analyze and qualify data
collected from various sources is one of the main drivers of
Big Data analysis tools. For this, several contributions have
been made to discuss and propose improvements to current
analysis techniques. As one of the main success factors of Big
Data is the ability to manage constraints in real-time, Liu,

T

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

4733
IJSTR©2020
www.ijstr.org

Iftikhar and Xie [14], Zheng et al. [15] and Mohamed and Al-
Jaroodi [16] have addressed this topic by providing an
overview of the current state of the tools that can handle Big
Data. Liu, Iftikhar, and Xie [14] presented an analysis of open
source real-time processing technologies with a focus on real-
time architectures. Zheng et al. [15] discussed the challenges
of Big Data and in particular those of real-time processing.
They also presented a multilevel storage model and some
deployment methods to meet Big Data requirements in real-
time and heterogeneity. Mohamed and Al-Jaroodi [16]
presented some technical challenges to real-time applications
in Big Data. Also, they provided a performance analysis and
some Big Data requirements in real-time. Other researchers
have focused on the comparison of Big Data processing tools.
Indeed, Lopez, Lobato, and Duarte [17] have described,
analyzed and compared three main open-source distributed
flow processing platforms such as Spark, Flink, and Storm.
They provided experimental performance results focused on
throughput and parallelism in a threat detection application in
network traffic. In a study conducted by Lu et al. [18], a
repository of modern distributed flow calculation frameworks is
proposed. This benchmark covers performance, fault recovery
capacity and sustainability of Big data frameworks.
Nevertheless, this study provides a result only for Storm and
Spark. Hess et al. [19] proposed an overview and a
comparison of four flow processing platforms, one platform
more (Samza) than the study conducted by Lopez, Lobato,
and Duarte [17]. However, the comparison is based only on
the architecture and the responsibilities of the system
components and does not allow to conclude to superiority in
terms of efficiency. In a study by Lu et al [18], a benchmark
based on error recovery capability as well as sustainability for
modern distributed flow computing tools is presented. The
paper provides a set of comparison results between Storm and
Spark. Liu, Iftikhar, and Xie [14] presented real-time/near real-
time open-source processing technologies while focusing on
their architectures and platforms. Yadranjiaghdam, Pool, and
Tabrizi [20] presented tools for real-time analysis of big data
and classified different studies according to the tools used and
the type of application. They focused on applications related to
surveillance, the environment, social media, and health care.
Tsai et al. [21] discussed solutions for large data analysis.
Besides, they exposed some research directions and
questions about open techniques and platforms in this area of
research. Gong, Morandini, and Sinnott [22] proposed a
benchmarking and implementation of SMASH, a generic and
highly scalable Cloud solution, for processing large-scale
traffic data. Katal, Wazid, and Goudar [23] compared three
frameworks (Storm, Hadoop, Drill) through the following
characteristics: owner, workload, source code, low latency,
and complexity. Also, the issues and challenges of managing
Big Data were discussed. In the study by Almeida and
Bernardino [24], the authors compared six open source Big
Data platforms: Apache Mahout, MOA, Project R, Vowpal
Wabbit, and GraphLab, according to the programming
paradigm and programming language. interface, type of data
and algorithms supported. Urmila [25] introduced and
compared Hive, Pig, and MapReduce for Big Data analysis.
The comparison is based on the type of language, the user
interface, the available algorithms and the scale of data
supported in each tool. Some research has focused on NoSQL
(Not Only Structured Query Language). Indeed, Corbellini et
al. [26] compared NoSQL storage systems based on their

types (key-value, column, document, and row databases). The
comparison is based on API, language and persistence.
Nevertheless, it does not allow us to choose the database
adapted to the application needs. This study covers more
NoSQL databases than other studies such as the one
conducted by Dede et al. [27]. However, Moniruzzaman and
Hossain [28] covered fewer NoSQL databases than Corbellini
et al. [26] but cited more comparison attributes such as
integrity (atomicity, consistency, isolation, durability ...),
indexing (geospatial index, secondary indexes) and
distribution (replication, scalability horizontal ...). It is important
to note that Hadoop is not the only attractive platform for Big
Data, there is also Apache Spark. While both tools are
sometimes considered competitors, it is often accepted that
they work even better when combined. Apache Spark has
become increasingly suited as a high-level project for Big Data
analysis, so many research tends to focus on improving it. For
example, Gulzar et al. [29] created a tool called BigDebug that
provides real-time interactive debug primitives for massive
data processing in Spark. NetSpark, an improved Spark
framework is introduced by Li, Chen, and Xu [11]. This
Framework reduces the execution time of a Spark task by
combining network buffer management, hardware-supported
Remote Direct Memory Access (RDMA) technology, and
optimization. Serialization of the data. A strategy, called MPTE
(Multiple Phases Time Estimation), was presented by Yang et
al. [30] to reduce the impact of "straggler machines". In
addition, the scheduling of backup tasks has been improved
by designing a new task scheduler. Spark uses a fast
calculation in memory to process the data. However, in-
memory processing can cause a problem of volatility, failure,
or lack of a Resilient Distributed Datasets (RDD) that will
cause Spark to recalculate all the missing RDDs on the
lineage. A long lineage will also increase the cost in time and
the use of the driver's memory analyzing the lineage. For this,
Zhu, and Hu [31] presented an automatic checkpoint algorithm
to solve Spark's "long lineage" problem with little impact on
overall performance. Other studies have designed new Spark-
based frameworks to make big data analysis more powerful.
For example, Yan et al. [32] designed TR-Spark to deal with
transient resource issues. This framework can run as a
secondary background on transient resources and makes
Spark-based applications more efficient. The design of this
new framework is based on two principles: the stability of
resources and the planning of the reduction of the size of the
data. The combination of these principles allows TR-Spark to
adapt to the stability of the infrastructure. To better make
business decisions, Park et al. [33] relied on Spark to provide
a goal-oriented Big Data analytics framework. The latter was
experienced on the shipping decision.

3 SYSTEM ARCHITECTURE
In this section, we present the architecture of our system, this
architecture which consists of three parts the first is the
proposal of a SPARQL Metamodel, the second is to propose
also a Metamodel is the Spark Metamodel, and in the third part
we realize a transformation between these two meta-models
using a transformation language called QVT (Query View
Transformation) [34]. A SPARQL query Q that conforms to the
SPARQL metamodel will be transformed/mapped into a Spark
script S, this Spark script conforms to the Spark metamodel.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

4734
IJSTR©2020
www.ijstr.org

Figure 1 illustrates the architecture of our system, as well as
the relationships between models and metamodels.

Fig.1 System Architecture

3.1 SPARQL metamodel
In particular, SPARQL does not have a FROM construct to
define the relations we are going to query. By default, any
relation present in the database can be queried. A
"relationship" does not have to be declared explicitly and can
be any URI. SPARQL is therefore by default much more open
than SQL, since we are not limited to using the resources
defined in our database instance. SPARQL [35] is the
language recommended by the W3C for querying RDF
graphs. SPARQL 1.0 is the first recommendation for querying
RDF data. It defines requests of the form SELECT, ASK,
DESCRIBE and CONSTRUCT. A query of the form SELECT
returns the list of variable associations of the query to
resources or literals for which there is a matching of the
WHERE clause graph of the query with the RDF graph
queried. A SPARQL query of the ASK form makes it possible
to ask boolean response requests on an RDF graph; it allows
to ask if a pairing exists between the query graph and the RDF
graph; it controls the search for a match between the graph of
its WHERE clause and the RDF graph questioned. A SPARQL
query of the form CONSTRUCT produces a new RDF graph
by replacing the variables of the graph of the CONSTRUCT
clause with the values for which the query graph of the
WHERE clause matches with the RDF graph queried. A
SPARQL query of the DESCRIBE form makes it possible to
request the RDF description of a resource present in the
stored RDF data; its result is a set of RDF triples describing
the targeted resource. The WHERE clause of the SPARQL
queries of the form SELECT, ASK or CONSTRUCT contains a
graph pattern constructed as a conjunction of triples where a
variable can take the place of a resource or a literal. It can also
be a union of graphs, some parts of the query graph can be
declared optional, filters can be applied to the solutions of a
pairing:

 A UNION B brings together the solutions of graphs A
and B;

 A OPTIONAL B makes it possible to return the
solutions of A, whether there is a solution with B or
not;

 A FILTER B makes it possible to restrict the solutions
of A using a Boolean expression B.

 Operators make it possible to modify the sequence of
the solutions:

 DISTINCT eliminates duplicates;

 ORDER BY allows you to sort the solutions;

 LIMIT allows cutting the number of solutions by
limiting the number of returned solutions;

 OFFSET allows cutting the number of solutions by
indicating to begin the solutions generated after the
indicated number of solutions.

Figure 2 shows our proposed SPARQL metamodel.

Fig.2 System Architecture

3.1 Spark metamodel
In this section, we present our Spark metamodel proposition
shown in Figure 3. A Spark package is composed of Spark
models, and a Spark Classifier can be either a Spark Class or
a Spark Interface. A Spark Bihavioral is composed of Spark
Parameters and Blocks, the blocks can contain one or more
instructions.

Fig.3 Proposed Spark metamodel

3.3 Transformation
The transition between the different models presented before
is done through the execution of transformations. To transform
a model SPARQL to model Spark, we have to use a
transformation language such as ATL [36], and QVT [37]. ATL
is an open-source language, widely used in the industry. Its
implementation is robust and powerful. But ATL is not a norm.
Its competitor has the advantage of being a standard of the
OMG Object Management Group, the organization that has
notably made UML, MDA,... This is QVT (Query View
Transform). QVT allows you to normalize a way to express
correspondences (transformations) between languages
defined with MOF (Meta Object Facility). This language
provides mechanisms for expressing Queries (Query Q) to
filter and select elements of a model (including selecting the
source elements of a transformation), and to propose a
mechanism for creating views (Views V) that are models
deduced from another to reveal specific aspects. It also allows
formalizing a way of describing transformations
(Transformations T). There are two types of QVTs: QVTd

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

4735
IJSTR©2020
www.ijstr.org

(declarative, QVTr Relation and QVTc Core), equivalent to the
ATL "matched rules" and QVT Operational (imperative),
equivalent to "called rules" ATL. The QVT language could be
the ultimate "solution" for transforming models. Only here, as
very often in the standards, QVT suffers from a great
complexity. The QVTo version starts to be implemented while
QVT-Relation is in the embryonic state. Figure 4 below shows
a simple example of QVT code.

Fig.4 Part of QVT code

4 EXPERIENCE & VALIDATION
For the validation of our approach, we realize experiments
using our system, we also give a comparison of the results
obtained with the two famous existing systems Sesame and
Jena.

4.1 Configuration and Test Environment
We describe in this section the configuration of the test
environment and tools used, we performed two tests, the first
on a single machine mode of 4TB disk storage and 16GB
RAM storage, the second test on a Distributed mode this
cluster of three server disk storage 4TB disk storage and
16GB RAM storage. Our experiments are based on three
different datasets: LUBM Benchmark, DBpedia, and
SP2Bench. For tools: use Apache Spark 2.4.3, with Hadoop
version 3. Apache Jena version 3.12.0. and for Sesame, we
used the Sesame API 2.x. the Sesame API for handling RDF
in Java program requires the recovery of several JAVA JARs.
The Java code example below: Figure 5 illustrates initializing a
Repository, loading RDF data, writing RDF to a file, and
querying a remote Sesame server or public SPARQL endpoint.

Fig. 5 MapReduce JAVA code example for initializing a
Repository, loading RDF data, and writing RDF to a file and

querying a Sesame server.

4.2 Experiments results
In this section, we present the results of experiments
conducted on three Benchmark LUBM, DBpedia, and
SP2Bench. Figure 6 illustrates the execution time result of a

SPARQL query on a centralized mode of a single server and
figure 7 presents the result of the execution time of this
SPARQL query on a distributed mode (cluster of servers). In
the figures our system is named Big DataSW.

Fig. 6 Runtime on one machine

Fig. 7 Runtime on a cluster of distributed machines

5 DISCUSSION
We analyze these results; we can notice that there is a
difference between the centralized mode (a single machine)
and the distributed mode (cluster of the machines). The three
solutions: Sesame, Jena, and our systems give similar results
for running on a single server. But for the distributed mode we
notice the big difference between the three systems, Our
system reduces the execution time of a SPARQL query for the
three datasets used in this experiment LUBM, DBpedia, and
SP2Bench. Thanks to the use of Spark, the execution time of
complex SPARQL queries using our system has been
reduced, the answers are optimal at the join level because our
system uses an indexing scheme that is transformed directly
from the SPARQL query, this query that conforms to our Spark
metamodel. Another very important factor is that Spark is more
than 100 times very fast than MapReduce, so executing a
Spark script will be very fast due to the execution of a
MapReduce Job. To validate the choice of Spark, we found
that the method used by Spark to process the data makes it
much faster than MapReduce. While MapReduce works in
stages, Spark can work on all data at one time. The
MapReduce Job Sequence looks like this: it reads the data at
the cluster level, it executes an operation, writes the results at
the cluster level, reads the cluster-level updated data again,
executes the cluster next operation, he writes the new results
at the cluster level, and so on. On the contrary, Spark performs
all data analysis operations in memory and near real-time.
Spark reads the data at the cluster level, performs any
necessary analysis, writes the results at the cluster level. It is
important to note that Spark can run on several file and
database systems, including HDFS (Hadoop Distributed File

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

4736
IJSTR©2020
www.ijstr.org

System) [38]. Spark is a step ahead of MapReduce because it
handles most of its operations in memory, copying datasets
from a physical storage system to much faster RAM. For its
part, MapReduce [39] writes and reads data from the hard
disk. If disk access can take several milliseconds to access 1
MB of data, the data access rates in memory go below the
millisecond. Another advantage of Spark on MapReduce, its
relative ease of use and its flexibility. Finally, to conclude, the
fundamental difference between Hadoop MapReduce and
Spark is that Spark writes data in RAM, not on disk. This has
several important consequences on the speed of calculation
processing as well as on the global architecture of Spark.

6 CONCLUSION
Big Data technologies are capable of handling large volumes
of data, but are not dedicated to managing semantic web data
that is typically stored in RDF standard format. To query this
data we must use the SPARQL querying standard. In this
paper, we present a new model engineering approach for
analyzing and transforming complex SPARQL queries into
Spark scripts. To automate this transformation process, we
used the MDE approach that provides a formal framework for
the transformation and mapping mechanisms between two
languages.

7 REFERENCES
[1] Y. Guo, Zhengxiang Pan, and Jeff Heflin. "LUBM: A benchmark

for OWL knowledge base systems." Web Semantics: Science,
Services and Agents on the World Wide Web 3, no. 2-3 (2005):
158-182.

[2] M. Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille
Ngonga Ngomo. "DBpedia SPARQL benchmark–performance
assessment with real queries on real data." In International
semantic web conference, pp. 454-469. Springer, Berlin,
Heidelberg, 2011.

[3] M. Schmidt, Thomas Hornung, Georg Lausen, and Christoph
Pinkel. "SP ̂2Bench: a SPARQL performance benchmark." In
2009 IEEE 25th International Conference on Data Engineering,
pp. 222-233. IEEE, 2009.

[4] M. Banane, and Abdessamad Belangour. « RDFMongo: A
MongoDB Distributed and Scalable RDF management system
based on Meta-model». International Journal of Advanced
Trends in Computer Science and Engineering 8, n o 3 (2019):
734 – 741.

[5] M. Banane, and Abdessamad Belangour. "New Approach
based on Model Driven Engineering for Processing Complex
SPARQL Queries on Hive." International Journal of Advanced
Computer Science and Applications (IJACSA) 10, no. 4 (2019).

[6] M. Banane, and Abdessamad Belangour. « Querying massive
RDF data using Spark». International Journal of Advanced
Trends in Computer Science and Engineering 8, nᵒ 4 (2019):
1481 - 1486.

[7] Ma, Zongmin, and Li Yan. "Towards Massive RDF Storage in
NoSQL Databases: A Survey." In Emerging Technologies and
Applications in Data Processing and Management, pp. 263-284.
IGI Global, 2019.

[8] M. Banane, and Abdessamad Belangour. « An Evaluation and
Comparative study of massive RDF Data management
approaches based on Big Data Technologies». International
Journal of Emerging Trends in Engineering Research. 7, nᵒ 7
(2019): 48 – 53.

[9] G. Skourletopoulos, Constandinos X. Mavromoustakis, George
Mastorakis, Jordi Mongay Batalla, Ciprian Dobre, Spyros

Panagiotakis, and Evangelos Pallis. "Big data and cloud
computing: a survey of the state-of-the-art and research
challenges." In Advances in mobile cloud computing and big
data in the 5G Era, pp. 23-41. Springer, Cham, 2017.

[10] I. A. T. Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah
Mokhtar, Abdullah Gani, and Samee Ullah Khan. "The rise of
―big data‖ on cloud computing: Review and open research
issues." Information systems 47 (2015): 98-115.

[11] J. Li, Zheng Xu, Yayun Jiang, and Rui Zhang. "The overview of
big data storage and management." In 2014 IEEE 13th
International Conference on Cognitive Informatics and Cognitive
Computing, pp. 510-513. IEEE, 2014.

[12] E. Begoli. "A short survey on the state of the art in architectures
and platforms for large scale data analysis and knowledge
discovery from data." In Proceedings of the WICSA/ECSA 2012
Companion Volume, pp. 177-183. ACM, 2012.

[13] S. Mazumder. "Big data tools and platforms." In Big Data
Concepts, Theories, and Applications, pp. 29-128. Springer,
Cham, 2016.

[14] [X. Liu, Nadeem Iftikhar, and Xike Xie. "Survey of real-time
processing systems for big data." In Proceedings of the 18th
International Database Engineering & Applications Symposium,
pp. 356-361. ACM, 2014.

[15] Z. Xie, Guannan Liu, Junjie Wu, Lihong Wang, and Chunyang
Liu. "Wisdom of fusion: Prediction of 2016 Taiwan election with
heterogeneous big data." In 2016 13th international conference
on service systems and service management (ICSSSM), pp. 1-
6. IEEE, 2016.

[16] N. Mohamed, and Jameela Al-Jaroodi. "Real-time big data
analytics: Applications and challenges." In 2014 international
conference on high performance computing & simulation
(HPCS), pp. 305-310. IEEE, 2014.

[17] M. A. Lopez, Antonio Gonzalez Pastana Lobato, and Otto
Carlos MB Duarte. "A performance comparison of open-source
stream processing platforms." In 2016 IEEE Global
Communications Conference (GLOBECOM), pp. 1-6. IEEE,
2016.

[18] R. Lu, Gang Wu, Bin Xie, and Jingtong Hu. "Stream bench:
Towards benchmarking modern distributed stream computing
frameworks." In 2014 IEEE/ACM 7th International Conference
on Utility and Cloud Computing, pp. 69-78. IEEE, 2014.

[19] G. Hesse, and Martin Lorenz. "Conceptual survey on data
stream processing systems." In 2015 IEEE 21st International
Conference on Parallel and Distributed Systems (ICPADS), pp.
797-802. IEEE, 2015.

[20] B. Yadranjiaghdam, Nathan Pool, and Nasseh Tabrizi. "A survey
on real-time big data analytics: applications and tools." In 2016
International Conference on Computational Science and
Computational Intelligence (CSCI), pp. 404-409. IEEE, 2016.

[21] C. W. Tsai, Chin-Feng Lai, Han-Chieh Chao, and Athanasios V.
Vasilakos. "Big data analytics: a survey." Journal of Big data 2,
no. 1 (2015).

[22] Y. Gong, Luca Morandini, and Richard O. Sinnott. "The design
and benchmarking of a cloud-based platform for processing and
visualization of traffic data." In 2017 IEEE International
Conference on Big Data and Smart Computing (BigComp), pp.
13-20. IEEE, 2017.

[23] A. Katal, Mohammad Wazid, and R. H. Goudar. "Big data:
issues, challenges, tools and good practices." In 2013 Sixth
international conference on contemporary computing (IC3), pp.
404-409. IEEE, 2013.

[24] PDC. de Almeida, and Jorge Bernardino. "Big data open source
platforms." In 2015 IEEE International Congress on Big Data,

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

4737
IJSTR©2020
www.ijstr.org

pp. 268-275. IEEE, 2015.
[25] U. R. Pol. "Big data analysis: comparison of hadoop mapreduce,

pig and hive." Int. J. Innov. Res. Sci. Eng. Technol 5, no. 6
(2016).

[26] A. Corbellini, Cristian Mateos, Alejandro Zunino, Daniela Godoy,
and Silvia Schiaffino. "Persisting big-data: The NoSQL
landscape." Information Systems 63 (2017): 1-23.

[27] E. Dede, Madhusudhan Govindaraju, Daniel Gunter, Richard
Shane Canon, and Lavanya Ramakrishnan. "Performance
evaluation of a mongodb and hadoop platform for scientific data
analysis." In Proceedings of the 4th ACM workshop on Scientific
cloud computing, pp. 13-20. ACM, 2013.

[28] M. Moniruzzaman, and Syed Akhter Hossain. "Nosql database:
New era of databases for big data analytics-classification,
characteristics and comparison." arXiv preprint arXiv:1307.0191
(2013).

[29] M. A. Gulzar, Matteo Interlandi, Tyson Condie, and Miryung Kim.
"Bigdebug: Interactive debugger for big data analytics in apache
spark." In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pp. 1033-1037. ACM, 2016.

[30] Y. Ma, Yulei Wang, Jun Yang, Yiming Miao, and Wei Li. "Big
health application system based on health internet of things and
big data." IEEE Access 5 (2016): 7885-7897.

[31] H. Yang, Xianyang Liu, Shenbo Chen, Zhou Lei, Hongguang
Du, and Caixin Zhu. "Improving Spark performance with MPTE
in heterogeneous environments." In 2016 International
Conference on Audio, Language and Image Processing
(ICALIP), pp. 28-33. IEEE, 2016.

[32] Y. Yan, Yanjie Gao, Yang Chen, Zhongxin Guo, Bole Chen, and
Thomas Moscibroda. "Tr-spark: Transient computing for big data
analytics." In Proceedings of the Seventh ACM Symposium on
Cloud Computing, pp. 484-496. ACM, 2016.

[33] G. Park , Sooyong Park, Latifur Khan, and Lawrence Chung.
"IRIS: A goal-oriented big data analytics framework on Spark for
better Business decisions." In 2017 IEEE International
Conference on Big Data and Smart Computing (BigComp), pp.
76-83. IEEE, 2017.

[34] P. Stevens, "Bidirectional model transformations in QVT:
semantic issues and open questions." Software & Systems
Modeling 9, no. 1 (2010).

[35] H.Ahuja. "Implementation of FOAF, AIISO and DOAP ontologies
for creating an academic community network using semantic
frameworks." International Journal of Electrical & Computer
Engineering. 9 (2019).

[36] F. Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. "ATL:
A model transformation tool." Science of computer programming
72, no. 1-2 (2008): 31-39.

[37] M. L.Drago, Carlo Ghezzi, and Raffaela Mirandola. "A quality
driven extension to the QVT-relations transformation language."
Computer Science-Research and Development 30, no. 1
(2015): 1-20.

[38] M. A. Rahman, J. Hossen, C. Venkataseshaiah, Ck Ho, Kim
Geok Tan, Aziza Sultana, M. Z. H. Jesmeen, and Ferdous
Hossain. "A Survey of Machine Learning Techniques for Self-
tuning Hadoop Performance." International Journal of Electrical
and Computer Engineering 8, no. 3 (2018): 1854.

[39] G. Bathla, Himanshu Aggarwal, and Rinkle Rani. "A Novel
Approach for Clustering Big Data based on MapReduce."
International Journal of Electrical & Computer Engineering
(2088-8708) 8, no. 3 (2018).

