A Comprehensive Review On Electric Vehicles

A.Karthikeyan, Dr. S. Vijayarajan

Abstract: Electric vehicles (EVs) are winding up progressively prominent in numerous nations of the world. EVs are demonstrating more energy effective and ecological well-disposed than ICEVs. Be that as it may, the absence of charging stations confines the wide appropriation of EVs on the planet. As EV use develops, progressively open spaces are introducing EV charging stations. Then again, if EVs are charged by means of existing utility framework controlled by petroleum derivative based age framework, at that point it influences the dissemination framework and couldn’t be earth well disposed. As solar has great potential to generate the electricity from the PV panel, the charging of EVs from PV panels would be a great solution and also a sustainable step toward the environment. This paper presents a comprehensive analysis of solar PV-EV charging systems and deployment in the world. Analytical methods were proposed to obtain information about EV charging behavior, modes of charging station operation, and geolocation of charging station users. The methodology presented here was time- and cost-effective, and very helpful to the researchers and students in this field.

INTRODUCTION

Sustainable power source bolster plans have been broadly created in numerous nations lately in view of the natural concern increment and vitality security dangers [1]. As an outcome, huge quantities of sustainable power source assets are incorporated in power frameworks, which give new difficulties and chances to the activity and the arranging of lattices. These days, sustainable power source assets close by customary generators give various sorts of intensity framework subordinate administrations, e.g., frequency control [2]. Frequency control expects to keep the dynamic power balance between all-out power age and the power request in the power framework so that the framework frequency stays in a worthy range [3]. The Plug-in Electric Vehicle (PEV) innovation is one of the circulated vitality advances that has been progressively sent. Their ability to put away vitality and quick dynamic power controllability make them alluring, particularly for the arrangement of Primary Frequency Control (PFC) in island and network associated frameworks [4]–[6]. A few qualities of PEV armada like the sort of the frequency controller, the infiltration dimension of PEVs in the framework, and the battery charger topology impact the interest of PEVs in the PFC. The impact of these elements on the PFC reaction of PEVs has been assessed in the writing [5]–[11]. Concerning the sort of the frequency controller, the easiest control approach is the abrupt separation of all PEVs from the power framework following a huge unsettling influence in the framework [7]. Be that as it may, this control approach can result in undesired over frequency reactions, when the disengaged intensity of PEVs is more than the power unevenness in the framework. As a substitute, a straightforward consistent hang trademark with dead-band capacity can be decently utilized in each PEV to cause it to react to frequency changes inside 10 s to 30 s [8].

The steady hang control execution has brought about the improvement of the base transient frequency and the frequency recuperation term, which keeps going a few minutes [5], [8]. For a more drawn out timeframe, e.g., a few hours, PEV can consistently take an interest in PFC this may influence the charging calendar of PEVs, and as a result, the vitality of the PEV’s battery differs. In this way in [9], a decentralized Vehicle to Grid (V2G) control has been created to at the same time control the PEV’s charging plan and the framework frequency. In this control, the hang coefficient is balanced by the vitality of the PEV’s battery. Notwithstanding the hanging control [10], a subsidiary controller can be added to PFC of PEVs that imitates the virtual inertial reaction, which has improved further frequency reaction of an island arrange. The PFC support from PEVs increases if their infiltration level in the power framework increments. Inside the power arrangement of Great Britain, huge quantities of PEVs are recreated to take part in PFC constantly of 2020, and thus, the framework frequency is improved in [7]. In an island framework, which is completely entered by PEVs and inexhaustible assets, PEV armada reaction has stifled frequency deviations [8]. Moreover, this can encourage amplifying the breeze ranches mix by smothering frequency deviations in power frameworks [11]. Concerning the battery charger topology, a PEV outfitted with the Bidirectional Battery Charger (BBC) gives more essential hold than a PEV with the Unidirectional Battery Charger (UBC) [7]. Since the topology of the BBC permits that the battery vitality is infused back to the framework.

Electric vehicle configuration

There are commonly two acknowledged essential arrangements for HEVs including arrangement and parallel. A double or multi-mode type is additionally considered as a third kind that consolidates the highlights of both the arrangement and parallel mixtures [12]. The arrangement HEV setup fuses a fuel converter (IC Engine), a generator, battery, and an electric engine as appeared in Figure 1.
Therefore, the fuel converter does not drive the vehicle shaft legitimately. Rather, it changes over the mechanical power into the electrical vitality utilizing a generator. The electric vitality is likewise spared in the vitality stockpiling framework (for example battery). In this arrangement, the torque required to drive the vehicle is provided by the electric engine. Notwithstanding, in parallel HEV, both electric engine and IC motor may convey capacity to the vehicle wheels as appeared in Figure 2. The electric engine may likewise be utilized as a generator to charge the battery by either the regenerative braking or retaining the abundance control from the motor when its yield is more noteworthy than that required to drive the wheels. One of the upsides of the parallel HEV over the arrangement type is that the parallel HEV requires a littler motor and a littler electric engine to give a similar exhibition. This component makes the parallel HEV increasingly appropriate for traveler autos where the arrangement design is normally utilized for uncompromising vehicles. In the consolidated arrangement parallel half breed, the design includes an extra mechanical connection contrasted and the arrangement mixture and furthermore an extra generator contrasted and the parallel crossbreed that makes the arrangement parallel HEV a moderately progressively confounded and exorbitant variant. A parallel HEV consolidates two power drives including an IC motor and electric engine. Subsequently, it is the obligation of the parallel HEV control procedure to decide how to disseminate the driver’s required torque between the IC motor and electric engine. For negative torque demand (vehicle braking), the motor torque is zero and the entirety of the engine and brake torques would be equivalent to the driver’s solicitation. Be that as it may, for positive torque demands, the whole of the motor and engine torques ought to be equivalent to the driver’s solicitation. A few control techniques have been utilized for parallel HEV among which EACS[13] is the for the most part utilized. Utilizing an EACS, as suggested by its name, the principle vitality supplier is IC motor and the electric engine is utilized as IC motor associate. EACS utilizes the electric engine when the IC motor either does not work productively or the mentioned power is past its greatest deliverable torque. Then again, when the battery State of Charge (SOC) is low, the motor will give abundance torque to be utilized by the engine to charge the batteries (the engine capacities as a generator).

Traditional approaches

Load Frequency control (LFC) is fundamental in the activity of interconnected power frameworks. Because of burden aggravations, the absolute provided power does not generally coordinate the power request and this causes some bothersome impacts [14, 15], for example, the frequency and exchange power may broadly sway and go astray from the booked qualities. Along these lines, the fundamental goal of LFC is to keep up the frequency and exchange control at the ideal qualities through suitable control activity [16–18]. A multi-zone complex power framework typically involves countless removed or remote regions where every region is interconnected to others by means of air conditioning electrical cables [17, 18]. Alongside air conditioning transmission, HVDC transmission is likewise utilized because of some monetary advantages and its capacity to improve strength in the framework. HVDC transmission usually does not require any responsive power remuneration, has lower electrical loses and is increasingly efficient when electric power is exchanged over long separations [19, 20]. By utilizing air conditioning and HVDC connects together, better soundness edge and dynamic execution can be accomplished [21-23]. Then again, TCPS which is an application FACT is another conceivable instrument for upgrading the dynamic execution of the framework [24]. TCPS situated along an air conditioner tie-line can direct power stream by changing the relative voltage point between the two interconnected zones [25]. As of late, EV has pulled in extensive research interests because of its naturally cordial attributes, for example, lower nursery discharge and commotion contamination [26, 27]. EV has its own battery and with the V2G innovation, an armada of thousands of EVs can be utilized as controllable vitality stockpiling gadgets to take part in the power framework task [28, 29]. Working as an enormous BESS, an armada of EVs is exceptionally compelling in balancing out burden and frequency changes [29-33] because of the quick reaction attributes of EVs battery [34]. Besides, hundred a great many EVs can be associated with the network as a huge power plant. This circumstance is plausible since the greater part of EVs are a module to the matrix when stopping at the station or at home [35]. In this way, it is conceivable that EVs partake in the LFC to help control units to quickly smother load vacillations [36-39]. EVs communicate to the matrix by bidirectional power electronic gadgets so they respond to the new burden set-point quicker than ordinary generators [39]. So as to bunch an armada of thousands of EVs, the idea of aggregator has been created [40 - 43]. Here, the job of an aggregator is to accumulate and send data about the EVs’ status to the control focus and reallocate the control order to scatter EVs. To build up a keen power lattice that can coordinate EVs, an open correspondence foundation, for example, Internet association [33,34] remote convention with
ZigBee innovation, and Bluetooth [29]. In this paper, we think about that the vast majority of EVs at every neighborhood stopped at stations which are shut together and the correspondence occurs at an extremely fast in respect to the speed of the shut circle framework. In the case of conventional works such as the renouncing work, it displayed a few advancement techniques like Mixed Integer Linear Programming (MILP) [44-48], Model Prescient Control (MPC) approach [49], moving skyline strategy [50], and game theory [51], for making proficient operational timetables or settling on great utilization and creation choices to brilliant home vitality the executives. The task of a savvy family unit that claimed a PV, a vitality stockpiling framework that comprised of a battery bank and furthermore an EV with Vehicle to Home (V2H) choice was considered through comprehending a MILP [44]. A MILP model of the HEM structure was given to play out a cooperative assessment of a dynamic evaluating based Demand Response (DR) methodology, a conveyed little scale sustainable power source age framework, the V2H ability of an EV together with two-way vitality exchanging of EV (utilizing V2G alternative) and vitality stockpiling framework (ESS) [45]. An ideal brilliant family unit machines planning was built up under hourly evaluating and pinnacle control restricting (hard and delicate power confinements)-based interest reaction systems[46], where thermostatically and non-thermostatically controllable burdens were unequivocally demonstrated. The ideal activity of an area of shrewd families as far as limiting the complete vitality obtaining cost was investigated utilizing MILP by considering bi-directional power stream both at the family unit and neighbourhood level [47]. A MILP model for techno-financial ideal measuring of extra PV and ESS venture for a DR-based HEM framework controlled savvy family unit was furnished with the thought of the outstandingly changing burden design due to DR exercises [48]. A nonlinear prescient vitality the board strategy for structures with PV framework and battery stockpiling was displayed [49], which estimated house burden request by means of counterfeit neural systems. A tale vitality the executive’s framework dependent on a moving skyline procedure for a renewable-based microgrid was proposed and actualized, made out of PV boards, two breeze turbines, a diesel generator and a vitality stockpiling framework [50]. The effects of the reaction ability dimensions of buyers on the financial joining of dispersed PV control in savvy homes and the effects of PV limits and battery limits on shoppers power costs were broke down utilizing non-participation game hypothetical power advertise complementarity model [51]. The vast majority of the related writing seeks after a savvy home innovation potential assessment objective. Hardly any look for a constant control framework that enhances vitality the board with an unequivocal thought for stochastic home burdens, PV age, and EV versatility designs. The fundamental test of brilliant home vitality the board emerges from different wellsprings of haphazardness, i.e., PEV portability, client power request, and sustainable power age. Liang et al.[52] gave an exhaustive writing overview on the stochastic displaying and improvement instruments for microgrid and showed the viability of such devices. To limit purchaser's normal power cost, the ideal booking calculations for power utilization with unsure future cost had been determined under Stochastic Dynamic Programming (SDP) [53]. Iverson et al. represented probabilities of vehicle flight time and excursion length to define an SDP calculation to ideally charge an EV dependent on an inhomogeneous Markov chain model [54]. To advance client request reaction through streamlining the usage of wind control age, the planned breeze PEV dispatch issue was likewise contemplated in a stochastic system catching the vulnerabilities of wind control age and measurable PV driving examples [55]. A stochastic vitality utilization booking calculation with the goal of decreasing money related costs was highlighted by demonstrating the arbitrary property of client vitality utilization rehearses [56]. On the other hand, all the previous articles center around the microgrid vitality the executive's issue utilizing stochastic improvement, given one and just a single irregular factor: either electric cost or PEV portability, either sustainable power source age or home burden. The communications among different arbitrary factors were always neglected. A likelihood dissemination model consolidating family unit control utilization, EV home-charging and PV control generation was created utilizing a convolution way to deal with union three separate existing likelihood conveyance models [56]. Donadee et al. [57] utilized stochastic models of (i) module and fitting out conduct, (ii) vitality required for transportation, and (iii) electric vitality costs. These stochastic models were consolidated into an endless skyline Markov Decision Process (MDP) to limit the entirety of electric vitality charging costs, driving expenses, and the expense of any driver burden. A later report [58] built a Markov Chain to show arbitrary costs and guideline signal and planned a SDP to enhance the charging and frequency guideline limit offers of an EV. The past two examinations, nonetheless, did not consider coordinated PEV accusing of structure loads and a sustainable power source.

Overview of electrical vehicles

The charging of PHEVs and EVs can be a moderately enormous burden in the power network. In the event that the charging is unmanaged, the power lattice can be influenced adversely. In this manner, it is basic to think about the effect of EVs on the power network. An examination of this effect was first appeared in [59]. An outline of how to examine the coordination of EVs into the present power framework is appeared in [60]. It appears both voltage and power blockage issues can emerge from uncontrolled EV charging. In [61], the ends are that the effect on the Distribution System Operators (DSO) will be noteworthy. DSOs, who oversee and work the circulation lattices, have accordingly an enthusiasm for supporting and overseeing EV charging in the event that it dodges a monstrous fortification of the conveyance matrix. Conversely, the EVs could possibly be a benefit in the power framework by giving subordinate administrations. There are a few ideas proposed in the writing and they, as a rule, include both charging and releasing of EVs, otherwise called Vehicle-to-Grid (V2G), to help the power framework level out tops in general utilization. Different V2G ideas were considered in [62] where noteworthy benefits can be made by offering these administrations. An examination on the effect of EVs and the potential benefit to be made on auxiliary administrations on the primary island of the Azores is appeared in [63]. To offer subordinate
Review of speed control model

Multi-Stage Optimal Control Model

This section presents how the optimal speed control is modeled as a multi-stage optimal control problem based on the energy consumption model presented in the previous section. Denote $x(t)$ as the status of an EV at time t with two entries $x(t) = [x_1(t), x_2(t)]'$ = $[s(t), v(t)]'$ (1)

Where $s(t)$ is the distance from the arterial entrance s_0, and $v(t)$ is the speed of the vehicle at time t. The relationships between vehicle locations (t), velocity $v(t)$, and acceleration $a(t)$ can be formulated as

\[
\begin{align*}
\dot{s}(t) &= v(t) \\
\dot{v}(t) &= a(t)
\end{align*}
\] (2)

Putting (2) and (3) into a vector form, we have an ordinary differential equation system that defines vehicle dynamics as

\[
\begin{bmatrix}
\dot{s}(t) \\
\dot{v}(t)
\end{bmatrix} = \begin{bmatrix}
v(t) \\
a(t)
\end{bmatrix} = f(x(t), u(t))
\] (4)

The control variable vector $u(t)$ in the above equation is the acceleration rate at time t, i.e.,

$u(t) = \begin{bmatrix} a(t) \end{bmatrix}$ (5)

A multi-stage optimal control model is then developed. In this model, each individual intersection i is treated as a “stage,” and an optimal control model is developed to minimize an individual EV’s electricity usage. The objective function for individual intersection i can be formulated as

$$
\min_{a(t)} J(i) = \int_{t_0}^{t_f} P(v(t), a(t)) dt
$$ (6)

where i is the energy consumption for intersection i, or stage; $P(v(t), a(t))$ is the instantaneous power at time t; t_0 is the time when a vehicle enters intersection i; and t_f is the time when a vehicle leaves intersection i. The minimization problem (6) is subjected to several sets of constraints. The first set is the state constraints

$$
\begin{align*}
\dot{x}(t) &= f(x(t), u(t)), & t_0 \leq t \leq t_f \\
x(t_0^i) &= x_0^i, & \forall i
\end{align*}
$$ (7) (8)

The initial state $x(t_0^i)$ of the EV in (8) is determined by the EV’s end state when it leaves the previous intersection -1. So, except for the first intersection, (8) can be represented by

$$
x(t_0^i) = x_0^i = x(t_{i-1}^i) \forall i = 1, 2, 3, ..., n
$$ (9)

The second set of important constraints is queue limitation constraint. We assume that, with advanced data collection and queue estimation technologies such as those based on V2V and V2I communications, the intersection queue dynamics are known in advance and can be characterized by $A_i = (T_i^A, D_i^A)$, which estimate the location of the end of the queue, D_i^A, at time T_i^A for each intersection i. The queue limitation constraint is designed to avoid stop-and-go situations when the study vehicle runs into a queue. Therefore, this constraint essentially aims to assure that the location of the vehicle at a time T_i^A is not beyond the tail of the queue (i.e., D_i^A). In other words, with this constraint, the proposed model will automatically determine the appropriate values of velocity and acceleration so the vehicle can either stop at the end of a queue or smoothly join a queue. This constraint is represented as

$$
s(T_i^A) \leq D_i^A \forall i
$$ (10)

Similarly, the time when the vehicle leaves intersection $i (t_f^i)$ should not exceed the latest time that the vehicle should pass through the intersection T_i^f, which is estimated based on the predicted vehicle trajectory by considering queuing dynamics

$$
t_f^i \leq T_i^f \forall i
$$ (11)

In addition, there are lower and upper bounds for state and control variables

$$\begin{align*}
0 \leq v(t) &\leq v_M \\
a_m &\leq a(t) \leq a_M
\end{align*} \forall 0 \leq t \leq T
$$ (12)

Where v_M denotes maximal speed, a_m and a_M denote maximal deceleration (negative) and acceleration rates, respectively. Note the current model assumes the limits of the controlled acceleration are independent of the vehicle speed and gradient, and arbitrarily set up lower and upper bounds for speed and acceleration according to some suggested empirical values. This is not realistic. A more reasonable way, like the methods applied in some Train Driver Advice Systems (TDASs) [71], is to directly interface to the traction control systems to provide control and speed advices to drivers. In this way, traction and braking force will be control variables. The reason to use traction and braking force rather than acceleration is that there is a limit
to how much force the vehicle can exert at the road. The resulting acceleration of the vehicle depends not only on the traction force, but also on the external gradient and resistance forces. This investigation will be left for future research. The above optimal control problem suggests an optimal speed trajectory for an EV traveling toward intersection i. A similar process can be applied to find the optimal speed trajectory for intersection i+1 when (8) is used to treat the end state of the vehicle at the intersection i like the start state at intersection i+1. The overall multi-stage optimal control problem for a corridor with intersections can be modeled as

$$\dot{x}(t) = f(x(t), u(t)), \quad 0 \leq t \leq T \quad (13)$$

$$x(0) = x_0 \quad (14)$$

$$t^0_1 = 0 \quad (15)$$

$$t^T_f = T \quad (16)$$

In the above model, (12) is the objective function which considers the overall energy consumption for an EV traveling through a corridor consisting of signalized intersections; (13) describes the state constraint; (10) is queue limitation constraint; (11) is travel time constraint; (9) represents the linkage between adjacent stages (i.e., signalized intersections); (14) and (15) define the initial state of the EV; and (12) denotes the boundary constraints for the EV's speed and acceleration rate. Note we add (16) as one more constraint which specifies the EV arrival time at the last intersection. Since T represents the predicted time when the EV passes through the last intersection without optimal speed control, the last constraint (16) essentially ensures that the EV traverses the whole arterial without any extra time (or delay). The energy consumption of the EV may be further reduced, if equality (16) is replaced by an inequality v ≤ T1T where T1T is the latest time that the EV should pass through the last intersection. However, the travel time of the EV will increase by relaxing the constraint (16).

Approximation model

The multi-organize ideal control issue (8-16) can be tackled numerically by either utilizing meta-heuristics, for example, Genetic Algorithm (GA), or angle based methodologies like the pseudo-phantom techniques [72]. Be that as it may, applying these techniques to tackle the ideal control issue with ceaseless time, for the most part, depends on discretizing the transient and spatial measurements into a succession of collocation focuses, which instigate countless choice factors. It ordinarily requires generous investment to discover an answer because of its huge issue measure. Our past investigations demonstrated that the pseudo-otherworldly technique takes minutes to locate the ideal speed direction for a little two-crossing point model [73]. This isn’t worthy for ongoing activities as the vehicle may navigate through the entire hall before the program recognizes the ideal speeds. To address this issue, we propose an estimation model in this examination. The proposed estimation model depends on the numerical properties of the first multi-organize model, i.e., for each control arrange, the ideal control issue can be changed into a grouping of nonlinear projects with extensively less choice factors. In particular, the proposed estimation model will isolate each control arrange into three stages: (i) quickening or decelerating at a consistent rate, (ii) cruising, and (iii) again quickening or decelerating at a steady rate. The primary method of reasoning behind this estimated model is to enable the vehicle to voyage as far as might be feasible so as to decrease the general vitality utilization since cruising is a vitality effective voyaging state. Note that this idea has been additionally checked by our contextual investigation, which demonstrates that the ideal arrangement from the first multi-organize ideal control model (18-16) in fact pursues over three phases (i.e., speeding up cruising-increasing speed) so as to accomplish the insignificant all out vitality utilization (the subtleties will be exhibited in Section V-B). In view of this idea, a minimization issue that considers the effect of the nearness of crossing point lines is created here. To improve the capacity, we disregard the superscript I for street section (or control arrange) I in the plan as pursues:

$$\min_{a_1, a_2, t_1, t_2, v^*} J = \int_{t_0}^{t_2} P(v(a_1, t), a_2)dt + \int_{t_0}^{t_1} P(v^*, 0)dt + \int_{t_0}^{t_2} P(v(a_2, t), a_2)dt$$

$$\text{Subject to}$$

$$v_0 + a_1(t_1 - t_0) = v^* \quad (18)$$

$$s_0 + \left[\frac{1}{2}a_1(t_1 - t_0)^2\right] = \bar{A} \quad (19)$$

$$t_f = \bar{T} \quad (20)$$

$$x(0) = x_0 = [s_0, v_0] \quad (21)$$

$$0 \leq v^* + a_2(t_f - t_2) \leq v_M \quad (22)$$

$$t_0 \leq t_1 \leq t_2 \quad (23)$$

$$t_1 \leq t_2 \leq t_f \quad (24)$$

$$a_m \leq a_1 \leq a_M \quad (25)$$

$$a_m \leq a_2 \leq a_M \quad (26)$$

$$0 \leq v^* \leq v_M \quad (27)$$

From the above equations, (18) guarantees that the cruising speed v* will be come to at t1; Eqn. (19-21) portray line impediment requirement; the underlying states0andv0in Eqn. (22) are given by the terminal states f and v in the past control organize; Eqn. (23) guarantees the vehicle’s last speed is inside as far as possible; and Eqn.(24 –28) depict lower and upper limits of choice factors. Note that, rather than the practical structure a(t)in the ideal control model Eqn. (8–16), we just have five choice factors: the steady increasing speed ratea1to accomplish the cruising speed, the consistent quickening ratea2to accomplish the last condition of current control organize, the time moment t1 to begin cruising, the time instantt2to complete the process of cruising, and the cruising speed v not have the cruising time frame t1t2. The above plan is utilized when the framework predicts that the vehicle will stop toward the finish of a line. On the off chance that the framework predicts that the vehicle would not stop in a line, at that point the area imperative Eqn. (19) and the terminal time limitation Eqn. (21) ought to be supplanted by the accompanying conditions in like manner:
s_0 + \left[v_0(t_1 - t_0) + \frac{1}{2} a_1(t_1 - t_0)^2 + v^*(t_2 - t_1) + \left[v^*(t_f - t_2) + \frac{1}{2} a_2(t_f - t_2)^2 \right] \right] (28)

\[t_f = \frac{T_f}{f} \quad (29) \]

Where lies the location of the stop bar, and T_f is the earliest time that the vehicle could pass the intersection determined by signal conditions. Note that Eqn. (19)–(21) or Eqn. (28)–(29) together ensure that the EV would not have a longer journey time compared to the case without any speed controls.

Review of Converter model

An energy storage system plays an important role in electric vehicles (EV). Batteries, such as lead-acid or lithium batteries, are the most popular units because of their appropriate energy density and cost. Since the voltages of these kinds of battery cells are relatively low, a large number of battery cells need to be connected in series to meet the voltage requirement of the motor drive [74]. Because of the manufacturing variability, cell architecture and degradation with use, the characters such as volume and resistance will be different between these cascaded battery cells. In a traditional method, all the battery cells are directly connected in series and are charged or discharged by the same current, the terminal voltage and state-of-charge (SOC) will be different because of the electrochemical characteristic differences between the battery cells. The charge and discharge have to be stopped even though only one of the cells reaches its cut-off voltage. Moreover, when any cell is fatally damaged, the whole battery stack cannot be used anymore. So the battery cell screening must be processed to reduce these differences, and voltage or SOC equalization circuit is often needed in practical applications to protect the battery cells from overcharging or overdischarging [75]. Generally, there are two kinds of equalization circuits. The first one consumes the redundant energy on parallel resistance to keep the terminal voltage of all cells equal. For example, in a charging course, if one cell arrives at its cut-off voltage, the available energy in other cells must be consumed in their parallel-connected resistances. So the energy utilization ratio is very low. Another kind of equalization circuit is composed of a group of inductances or transformers and converters, which can realize energy transfer between battery cells. The energy in the cells with higher terminal voltage or SOC can be transferred to others to realize the voltage and SOC equalization. Since the voltage balance is realized by energy exchange between cells, the energy utilization ratio is improved. The disadvantage is that a lot of inductances or isolated multiwinding transformers are required in these topologies, and the control of the converters is also complex [76]. Some studies have been implemented to simplify the circuit and improve balance speed by multistageequalization [77]. Some zero voltage and zero current switching techniques are also used to reduce the loss of the equalization circuit [77]. Multilevel converters are widely used in medium or high voltage motor drives [78]. If their flying capacitors or isolated dc sources are replaced by the battery cells, the battery cells can be cascaded in series combining with the converters instead of connection in series directly. In [79], the cascaded H-bridge converters are used for the voltage balance of the battery cells. Each H-bridge cell is used to control one battery cell; then the voltage balance can be realized by the separate control of charging and discharging. The output voltage of the converter is multilevel which is suitable for the motor drives. When used for the power grid, the filter inductance can be greatly reduced. The cascaded topology has the better fault-tolerant ability by its modular design and has no limitation on the number of cascaded cells, so it is very suitable to produce a higher voltage output using these low-voltage battery cells, especially for the application in power grid. Similar to the voltage balance method in traditional multilevel converters, especially to the STATCOM using flying capacitors, the voltage balance control of the battery cells can also be realized by the adjustment of the modulation ratio of each H-bridge [80].

CONCLUSION

This paper discusses the review in Electric vehicles (EVs), the traditional approaches are compared with several approaches. The DC-DC converter models are illustrated in a different view. The configuration of Electric vehicles is deeply figured and explained the design of the model. The speed control model is reviewed with multi-stage and approximation model. This paper concludes that the best combination of speed control, as well as DC-DC converter, provides the optimal result.

REFERENCES

