Real-Time Sentiment Analysis Towards Machine Learning

Swati Sharma, Dr. Mamta Bansal

Abstract: Machine Learning is one of the apogees growing data science having tremendously large domain of applications. It is a subfield of data science; having breathtaking approaches in the recent years and will surely grow with a rapid rate. According to current scenario, the use and demand of social media is increasing tremendously. People are relying more on internet, social media and thus the size of the data is becoming huge day by day. As the size of data is extremely huge, so there is a frightening rate to analyze the data and to extricate the useful data various technologies like big data, cloud computing, machine learning, deep learning, data science are coming up in the market. In this paper, we are analyzing tweets. From twitter, we have collected a large number of tweets, tokenization is performed using anaconda, an integrated development environment of python and then training is done on the tokenized tweets to identify the useful data. Spyder is yet another powerful technical environment of python. It provides advanced features of data analysis as well as excellent visualization.

Index Terms: Anaconda, Data Science, Machine Learning, Natural Language Processing, Snowballstemmer, Spacy, Spyder, Tweepy.

1. INTRODUCTION

SENTIMENT analysis, also refer as opinion mining is a family of data mining which measures the propensity of an individual's feeling using data mining, data science, data analysis, machine learning etc. [5] Sentiment analysis focuses to measure the individual behavior with respect to some topic or event whether he or she is feeling positive, negative or neutral. To distinguish people’s opinion various supervised learning and unsupervised learning approaches are used. [1]Text analytics is the method of obtaining polished information from data. [4] The polished information is obtained from the training of patterns using methods like statistical pattern learning. The procedure of text mining basically includes the classification of input data, obtaining pattern from the classified data and finally evaluation and the analysis of the obtained output. It is similar to data mining. For data analysis, we have used python; a high-level programming language, including various programming prototypes. Anaconda is an open source integrated development environment for python. It is helpful in evolving, training deep learning and machine learning models. [11] It is helpful in examining data with versatility. Anaconda is a cloud where various packages like numpy, matplotlib, scipy, spacy etc. are shared. Machine Learning is the technical study of data structures, algorithms and statistical models which systems use to execute the work without the help of explicit conditions. It is interrelated to computational statistics. [3] Machine learning can be accomplished by supervised learning, semi-supervised learning and unsupervised learning. Data science is a field which uses scientific methods, algorithms, procedures to extricate knowledge from huge amount of structured as well as unstructured data. [2] It involves formation of data insight as well as data products.

2 METHODOLOGY

2.1 Filtration of Raw Data

Detailed Raw data, also known as source data is a type of data that has not yet processed. There is a minor difference between data and information. [10] Data are the raw facts or materials which has its implicit meaning whereas the processed form of data is known as information. The data is being collected from twitter. An application is being created on twitter, on its application. The following Consumer key, consumer_secret, access_token, access_token_secret key is generated as follows:

consumer_key = "Sh4rtCV78EummAG1yWaQaXmyw"
customer_secret = "h6BytROKPoI7ucXiZRNmiJuFTM4wusu8adlU5rt5qV6N6TfX"
access_token = "1046769984737665029-y7HJ9s9wBEyDkKHC5ik3CCyX083Q3" access_token_secret = "j51htadkbPBkuL462iWp1fB7iXREia32UarRH5WKAy"

Handshake authorization is being generated between consumer and its account as follows:

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth, wait_on_rate_limit=True)

To use its services on anaconda, tweepy is being installed on anaconda prompt using

Conda install –c conda-forge tweepy

Open/Create a file to append data
csvFile = open('tryyy.csv', 'a')

#Use csv Writer
csvWriter = csv.writer(csvFile)
csvWriter.writerow(['date', 'twee'])

for tweet in tweepy.Cursor(api.search, q='#election', count=4000, lang="en", date_since="2019-01-01").items():
 print (tweet.created_at, tweet.text)
csvWriter.writerow([tweet.created_at, tweet.text.encode('utf-8')])
p=[]
d=pd.read_csv("sample tweets.csv")
for i in d.tweet:
p.append(i)

Thus, a sample of random tweets are collected from twitter in English language.

2.2 Tokenization of Filtered Data
Tokenization is a process of breaking up of task into parts also known as tokens and removing some features such as stop words. The loose words are known as tokens but it is beneficiary to distinguish among tokens.

For doing tokenization using anaconda, install natural language toolkit as follows:

Conda install –c anaconda nltk

There is a stemmer named snowballstemmer which needs to be imported from NLTK, it removes morphological post from tokens.

There is a package named spacy, it is a open source library used for natural language processing in anaconda. It is basically used for production and dealing with huge amount of text. [9]It is desirable to preprocess the text for deep learning.

Import Spacy as follows:

Conda install –c conda-forge spacy

The data is being tokenized after removing stop words, cue words, punctuations etc., which leads in the reduction in the size of data.[7] A set of tokenized tweets will be obtained.

e=[]
fl=pd.read_csv("tweetsafterrr.csv")
fl.rename(columns={"tweets after tokenization":"A"})
fori in fl.A:
 print(i) # for word in i:
 print(word)
e.append(s_stemmer.stem(word))

For papers accepted for publication, it is essential that the electronic version of the manuscript and artwork match the hardcopy exactly! The quality and accuracy of the content of the electronic material submitted is crucial since the content is not recreated, but rather converted into the final published version.

2.3 Vectorization of Tokenized Tweets
Vectorization is a very important feature which is used to increase the execution speed of python code without using loop and thus the efficiency of the code increases. [8]There are number of ways to do vectorization such as scalar product, outer product, element wise multiplication, dot product etc.

In spyder, integrated development environment of python, pipeline is used as follows:

fromsklearn.pipeline import Pipeline
fromsklearn.feature_extraction.text import TfidfVectorizer
fromsklearn.svm import LinearSVC

text_clf_lsvc = Pipeline([('tfidf', TfidfVectorizer()),
 ('clf', LinearSVC())])
text_clf_lsvc.fit(X_train, y_train)
predictions = text_clf_lsvc.predict(X_test)
from sklearn.externals import joblib
filename = 'finalizedl.sav'
joblib.dump(text_clf_lsvc, filename)
loaded_model = joblib.load(filename)
result = loaded_model.score(X_test, y_test)

3 RESULTS AND CONCLUSION
In this paper, we have worked upon integrated development environment of python known as anaconda. We have used spyder, a free IDE, an app of anaconda. It provides scientific python development environment. The data is collected from twitter. After collecting data, tokenization is performed which leads in the reduction in the size of dataset. Then vectorization done by which the efficiency of the python code is increased and finally training is done on the basis of the vectorized dataset using support vector class. The figure1 shows the precision comparison between trained and random tweets, how precise the random and trained tweets are to each other. The figure 2 shows the recall comparison among trained and random tweets, the recall factor is much more accurate of trained tweets in comparison to random tweets. The figure 3 shows the f1-score comparison between random and trained tweets, it has been seen that trained tweets have higher score than random tweets.

Fig. 1 — Precision Comparison among Random and Trained Tweets
The figure 4 represents a comparison between trained and random tweets, their accuracy, macro average and weighted average are compared.

REFERENCES