
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

2060
IJSTR©2020
www.ijstr.org

Regression Automation For Architectural Checker

Siva Kumar Kotamraju

Abstract: The paper deals with the design and development of Regression automation for Architectural Checker. The Automation Script developed
automates the running of Chekhov (AV Tool Frame Work) for all Processors and collects the files in desired Paths.

Keywords: Regression Automation, Checker.

————————————————————

I. INTRODUCTION
Pre Silicon Validation Starts before the development and
after finishing of the Exploration and Planning of Silicon.
Architectural Validation is ensuring that the Programmer
visible behavior is Correct and IA-32 Compatible. In
Architectural Validation Tool Flow, The feed (A Script) takes
a regression list and passes each entry on the list to Exec (A
Script). The Exec parsed the entry to create a work area,
build and execute a single test. Tests named with the .max
extension are assumed to contain macros that need to be
expanded before assembling. The expanded assembly file is
assembled into object code, typically as a .32.obj file. The
object file is passed to RTL and to Archsim as the test input,
and each model executes. The Checker is used to compare
the States of the two Systems (RTL-Untested & Archsim-
baseline) against each other. The Checker State
Comparison includes register values and memory values.
Chekhov is the next generation Micro Processor or Multi
Processor Pre-Silicon Validation Checker that enables
Architectural State Comparison of an MP (Multi Processor)
or MT (Multi Threaded) RTL simulation with a functional
simulator. There is no Single Script which does automation
of running the Chekhov for all Processors. Developed such a
Script which automates the running of regression test
directories for all Processors.

II. WHAT IS CHEKHOV AV?
The Chekhov AV tool is a validation framework for use in
validating the operation of Intel processors at the RTL (pre-
silicon) stage of development. It can be used to validate
processor operation for single threaded, multi-threaded
(MT), and multi-processor (MP), and multi-core
configurations. Chekhov AV runs on a Linux-based platform
and validates processor operation by performing a variety of
checks on the outputs of an RTL Simulator and of an
Architectural Simulator (such as Archsim or Sphinx). The
checks that Chekhov AV performs include the following:

• System Bus Protocol Checking:-Chekhov extracts
individual bus transactions from an FSB trace that is derived
from the RTL simulation. It then checks these transactions
for system bus protocol violations.

• Cache Coherency checking:-Using the bus
transaction information, Chekhov creates cache line

ownership data, which it in turn uses to check for MESI or
other cache-coherency protocol violations..

• Architectural State Checking:-The architectural
state generated by the RTL Simulator and the Architectural
Simulator are compared at instruction retirement
boundaries to verify correct functional operation.

• Inter-processor Data Consistency Checking:-By
correlating architectural instruction ordering with global load
and store visibility points, Chekhov determines if inter-
processor load and store values are correct.

• Memory Ordering Checking:-By correlating RTL
instruction retirement data with global visibility points,
Chekhov checks for memory ordering rules violations.

III. CHEKHOV AV OPERATION
The following illustration shows the basic components and
checking modules that make up the current version of
Chekhov AV. It also shows the flow of data through the tool
and the output files that provide the validation data from the
various checkers.

Operating modes
Chekhov AV has two operating modes: on-line and play-
back.
In on-line mode, the RTL simulator executes a test program
and produces trace data. This trace data is then
transmitted directly to Chekhov AV allowing it to perform its
validation checks on-the-fly. In play-back mode, Chekhov
AV is used as a post processor. Here, the trace data from
the RTL simulator is saved in files. This trace data can then
be run through Chekhov AV off-line to perform the
validation checks. For this task , considering Play-Back
mode only.

Test Program
To generate test data for analysis by Chekhov AV, a test
program must be executed by the RTL simulator. In on-line
mode, this program is launched with the Chekhov
invocation command and executed by the RTL simulator.
The output of the RTL simulator is then transmitted to the
Chekhov Bridge/Dispatcher Unit for analysis. As part of the
analysis process, the test program is also stepped through
the Architectural Simulator (Archsim), so that the output of
the Architectural Simulator can be compared with the
architectural state information generated by the RTL

 Department of CSE, Vignan’s Nirula Institute of Technology &
Science for Women, Pedapalakaluru,Guntur-522009

 siva.kotamraju@gmail.com

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

2061
IJSTR©2020
www.ijstr.org

Simulator. In play-back mode, the test program is
executed by the RTL simulator and the resulting trace data
is saved. At a later time, this trace data can then be run
through to Chekhov AV for analysis. During this play-back
run, the tests program is stepped through the Architectural
Simulator

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

2062
IJSTR©2020
www.ijstr.org

RTL Simulator
The RTL Simulator allows a test program to be run on the
RTL model of a processor under development. The
simulator can be configured for single processor, multi-
threaded (MT), or multi-processor (MP) execution. For MT
and MP simulations, the test program dispatches
processes or threads to run on each processor (each bus
agent) that is being simulated.

The RTL simulator produces three types of output
signals:

• FSB signals—The Intel processor front-side bus
signals. Chekhov AV uses these signals to perform system
bus protocol and cache coherency checking. These signals
also enable Chekhov AV to perform fuzzy checking of
memory transactions before the MPX-API is available.

• RTL instruction retirement signals—Signals from
the RTL simulator that indicate when instructions have
been retired and the architectural state of the processor
(register and memory states) at the retirement boundaries.
These signals are used for memory order, inter-processor
data consistency, and architectural state checking.

• MPX Signals—MPX-API signals that define when
loads and stores became globally visible (become GO).
The load visibility points (LVs) and store visibility points
(SVs) provided by MPX-API allow Chekhov to perform
exact memory order and inter-processor data consistency
checking. The MPX-API must be available to capture these
signals.

These signals are transmitted from the RTL Simulator
Interface to the Chekhov Bridge/Dispatcher Unit through an
IPC (Inter-processor communications) Interface

Chekhov Bridge/Dispatcher Unit
The Chekhov Bridge/Dispatcher Unit is an interface and

translator for the Chekhov AV input signals that it receives
from the RTL Simulator Interface or from play-back files. It
translates the FSB signals into a VCD-style trace, which it

then transmits to the Bus Checker. It translates the RTL
instruction retirement signals and MPX signals (if available)
into a proprietary Intel data format, which it then transmits
to the RTL Interface and the MPX-API Interface,
respectively.
The Chekhov Bridge can optionally store the FSB trace
data, RTL instruction retirement data, and MPX data off-
line in play-back files. In play-back mode, these play-back
files can then be read back into Chekhov AV for analysis.

RTL Interface
The RTL Interface takes the RTL instruction retirement
data and converts it into a proprietary data format that is
used by the Comparator/Checker and the Instruction
Interleaver. The data from the RTL Interface is sent to the
Comparator/Checker first, and from there it is sent to the
Instruction Interleaver

MPX-API Interface
The MPX-API Interface takes the global load and store
visibility data (LV and SV) it receives from the Chekhov
Bridge/Dispatcher Unit and converts it into a format that
can be used by the Instruction Interleaver.

Instruction Interleaver
The Instruction Interleaver forms the heart of Chekhov AV.
Its major function is to reorder the RTL instruction
retirement data from multiple processors or multiple
threads so that the output of the RTL Simulator can be
accurately compared with the output of the Architectural
Simulator. This reordering of instruction retirement data is
performed with two operations:

• Inter-processor instruction interleaving.

• Store synchronization.
When these two operations have been carried out for a
group of RTL instructions retirement states, the Instruction
Interleaver steps the Architectural Simulator. The resulting
instruction retirement data from the Architectural Simulator
and the interleaved and synchronized instruction retirement
data from the RTL Simulator are then send to the
Comparator/Checker for checking. Independently from this
RTL vs. functional checking operation, the Instruction
Interleaver also checks the RTL instruction retirement data
for inter-processor data consistency.

Comparator/Checker
The primary function of the Comparator/Checker is to
compare the results of an RTL simulation with an
architectural simulation. The checker compares the
interleaved RTL instruction retirement data with the
Architectural Simulator results to check that RTL results are
functionally (architecturally) correct

Inter-Processor Data-Consistency Checking
One of the auxiliary functions of the Instruction Interleaver
is to perform inter-processor data-consistency checking on
the RTL instruction retirement data. This checking is done
by comparing the load, store, and snooping activities of the
processors being simulated against a set of data-
consistency rules. Specifically, the Instruction Interleaver
checks that data from a snooped architectural store goes
out on the bus correctly, and it checks that an architectural
load is synchronized correctly with a prior architectural

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

2063
IJSTR©2020
www.ijstr.org

store. If cache ownership windows are being used to
determine load and store visibility, fuzzy checking occurs.
Here, a load can take data from another processor's store
whose visibility window overlaps or comes before the
load's visibility window. If discrete global visibility points
are being used, a load can take data from a store on
another processor only if the LV point comes after the SV
point.

Memory Order Checker
The Memory Order Checker (MOC) uses the interleaved
RTL instruction retirement stream to check intra-processor
memory ordering. Specifically, it checks that all loads and
stores from the same processor become visible on the
system bus in the correct order. The memory ordering rules
used by this checker are those that have been established
for the specific processor being simulated.

IV. PROPOSED WORK
There is no Script in Chekhov group which do regression
run of test directories of all Processors. The Script does
Automation of the Chekhov run for different processors and
generating a report. The report generated by the
Automation Script gives the description of the work done till
end of execution. This report can be taken as basis to
eliminate the errors generated for each Processor after
Chekhov run, to know the stage at which the script was
failed and the stages it was Completed Successfully. This
Script also does Clean-up of files and directories on a
regular basis. The Procedure for Automation is as Follows

2.3.1 Define Config file
Create a Config file which contains the hard coded
build/regress path $path and retrieve the path for future
reference. Create a LOG file which is used to log the status
of each step either Successful or Unsuccessful. If
Unsuccessful, Exit from the Script & Log Contents are
generated in the form of mail to user or if Successful, then it
logs the message.

2.3.2 Chekhov Cleanup
Check whether any Previous Chekhov Sub-directory is
there. If so, the script removes it in-order to get the fresh
Chekhov Sub-directory.

2.3.3 Checkout sources
Checkout the Sources of Chekhov. To Checkout the code
base, the Procedure is as follows:

1) Setenv CVSROOT /mpg/s1394/chekhov

2) Cvs co Chekhov.
If there are any errors while Checkout Sources due to

lack of group permissions… etc, the Control automatically
exits from the Program, logged into the Log file the
respective messages and Email is generated to the User.
The error if any is redirected to the error_chekout.log.

2.3.4 Build for Merom Executable
The next step is the build to get the merom Chekhov
Executable. The Procedure to build the Chekhov
Executable as Follows:

1) Change the Path to the make directory.

2) Specify the project (processor) name in the
Makefile.project file

At present, the following processors are
supported. BONNELL, NEHALEM, TEJAS,
YONAH, MEROM

Run Do Build Wrapper and the executable and
static/shared library of merom Processor will

Created under linux2* directory.
If there is any error while build due to errors in Source
repository etc.., simply exit from the Program and mail the
log contents to the respective user. The error if any is
redirected to error_build.log file. If there are no Errors,
simply append the Successful message to the log file and
Proceed to next step.

2.3.5 Make file Update
The next Step is Update the make file in make directory to
get the Nehalem Executable ready after Rebuild using
search and replace technique. Search for a word merom
and replace that word with Nehalem.

2.3.6 Rebuild for Nehalem Executable
Run Do Build Script again and the Nehalem executable
and static/Shared libraries of Nehalem Processor will
create under Linux* directory. If there is any error while
build due to errors in Source repository etc.., simply exit
from the Program and mail the log contents to the
respective user. The error if any is redirected to
error_build.log file. If there are no Errors, simply append
the Successful message to the log file and Proceed to next
step.

2.3.7 Difflog Cleanup
Clearing of Diff logs generated by the Script on a regular
basis. For implementing this function the Perl package
used is Date::Calc to create today’s directory and clear the
output directory generated before.

2.3.8 Tar files Cleanup
Clearing of Output tar files of run directories of respective
Processors. For implementing this function the Perl
package used is Date::Calc to create today’s directory and
clear the output directory generated before.

2.3.9 Run Chekhov
Take a loop and run the run-chekhov.pl Script for all
Processors in-order to collect the output tar files and
difflogs for all test directories and for all processors.

2.3.10 Email generation
Email the Log file Contents to the user using UNIX mutt
command.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 9, ISSUE 02, FEBRUARY 2020 ISSN 2277-8616

2064
IJSTR©2020
www.ijstr.org

FLOWCHART

V..RESULT S
YONAH:
Diff Log of Chekhov regressions

=================================

WHO : skotamra
WHEN : Wed Dec 6 01:40:45 PST 2006
CURRENT OUTPUT : output_120601_sk_ynh.tar.gz
OLD OUTPUT : output_082110_zh_ynh.tar.gz
FILES CHECKED : run_log.out, chekhov_log.out

MEROM:

No Failed Tests in
/mpg/s1396/CHEKHOV_REGRESSION_SCRIPTS/DIFFLOG
S/overall_diff_log_120600_sk_mrm.

Diff Log of Chekhov regressions
=================================

WHO : skotamra
WHEN : Wed Dec 6 00:38:01 PST 2006
CURRENT OUTPUT : output_120600_sk_mrm.tar.gz
OLD OUTPUT : output_111515_bj_mrm.tar.gz
FILES CHECKED : run_log.out, chekhov_log.out

TEJAS:

No Failed tests I observerd in
/mpg/s1396/CHEKHOV_REGRESSION_SCRIPTS/DIFFLOG
S/overall_diff_log_120600_sk.

Diff Log of Chekhov regressions
=================================

WHO : skotamra
WHEN : Wed Dec 6 00:41:01 PST 2006
CURRENT OUTPUT : output_120600_sk.tar.gz
OLD OUTPUT : output_111515_bj.tar.gz
FILES CHECKED : run_log.out, chekhov_log.out

BONNELL:

No Failed tests in
/mpg/s1396/CHEKHOV_REGRESSION_SCRIPTS/DIFFLOG
S.

Diff Log of Chekhov regressions
=================================

WHO : skotamra
WHEN : Wed Dec 6 20:32:52 PST 2006
CURRENT OUTPUT : output_120620_sk.tar.gz
OLD OUTPUT : output_082111_zh.tar.gz
FILES CHECKED : run_log.out, chekhov_log.out
=======================================

VI.CONCLUSIONS
Regression Automation, Error Criteria need to be
investigated further. The selection of diffed output tar file is
considered for comparison of earlier results. In future, the
Script is to be modified to include Skip check in the
Command line to eliminate user interaction for each
Processor regression and the second improvement is
required to have different regression Output directory names
for bonnell and tejas.

VII. REFERENCES
[1] ―When Perl is not quite Fast enough‖ by Nicholas Clark.

Link: http://www.ccl4.org/~nick/P/Fast_Enough/
[2] ―Optimize Perl‖ by Martin Brown Dated-19oct 2004.
[3] Link::http://www-128.ibm.com/developerworks/library/l-

optperl.html?ca=dgr-lnxw01OptPerl
[4] Data Structures and Algorithms with examples in Perl

by Jon Jacky.
Link: http://staff.washington.edu/jon/dsa-perl/dsa-
perl.html

[5] IA-32 Intel Architecture Software Developers Manual
–Volumes 1,2 and 3

[6] Learning Perl 4th Edition O’REILLY, by Randal L
Schwartz, Tom Phoenix and brain d foy

[7] Programming Perl 3rd Edition O’REILLY, by Larry
Wall, Tom Christiansen, Jon Orwant

GLOSSARY
• AV – Architectural Validation
• DUT –Device under Test
• RTL – Register Transfer Logic
• MESI - Modified/Exclusive/Shared/Invalid Protocol
• IA –Intel Architecture
• CE – Constraint Engine
• API –Application Programming Interface
• XML –Extensible Markup Language
• MUT – Model under Test
• FSB – Front Side Bus
• LV –Load Visibility
• SV–StoreVisibility

Test.max

Max

Macro Expansion

Test.asm

iASM Assembler

Test.32.obj

RTL Checker Archsim

Pass/Fail

http://www.ccl4.org/~nick/P/Fast_Enough/
http://www-128.ibm.com/developerworks/library/l-optperl.html?ca=dgr-lnxw01OptPerl
http://www-128.ibm.com/developerworks/library/l-optperl.html?ca=dgr-lnxw01OptPerl
http://staff.washington.edu/jon/dsa-perl/dsa-perl.html
http://staff.washington.edu/jon/dsa-perl/dsa-perl.html

