Application Of Information Science With Social Media Analytics: A Sentimental Analysis

Rajini G , Akshaya B

Abstract: Social media analytics is defined as the act of gathering information from several social media websites and breaking down those information with the help of social media analytics to settle on business conclusions. The most broadly recognized use of social media analytics is mining sentiment of the customer. Further advanced types of analysis with respect to social media involve sentiment analysis. This research paper reports the results of the sentimental analysis done for a company’s competitors using software R Studio and Google Analytics. One Company is taken as a sample and its Competitor company’s keywords were extracted (the contents with hash tags), to find the ratio of positive: negative words used in their social media content. This crude information, in reality, is frequently untidy and ineffectively organized. But Tidy data makes it easy to carry out data analysis. The investigation included sophisticated natural-language-processing machine learning algorithms to parse the content by an individual's post in social media about the organization in understanding the importance behind every individual's statement. Those algorithms made a measurable score of the public's sentiments towards the organization dependent on social media interactions and offer reports to the top administration. People’s opinions (sentiments) were analyzed, grouping large variations of them into fewer categories, and formed patterns that are usually not noticed by the naked eye. Then, they were matched along with the positive and negative standards and the number of positive and negative words, their location, and their ratio was listed out. In simple terms, this research makes an organization's insight much easier for understanding stakeholders and in decision making.

Keywords: Social media; Data analytics; Sentimental Analysis; Google analytics; Tidy data

1. INTRODUCTION

Data analytics refers to both quantitative & qualitative methods, procedures used to upgrade efficiency to the business and it's gain as well. Data is split, sorted in order to identify and investigate behavioural data, also their pattern of behaviour, and methods differ as indicated by organisational requirements. Data analytics is otherwise called data analysis. Breaking an entire into its different segments for individual examination is called analysis. Data analysis involves a process in acquiring crude information and converting over it to data that is helpful for decision making. Information were gathered and broken down to respond to questions, test speculations or disprove the existing theories. Data mining pertains to a specific data analysis system which concentrates around modeling as well as knowledge discovery for prediction instead of absolute description, at the same time business intelligence covers data analysis which depends intensely on aggregation, concentrating chiefly on data. In statistical applications, data analysis could be separated into descriptive statistics, exploratory information analysis (EDA), and confirmatory information analysis (CDA). EDA concentrates around finding new highlights in the information while CDA concentrates around proving or disproving existing hypotheses. Predictive analytics concentrates upon the utilization of statistical models for predictive forecasting or arrangement, whereas text analytics applies factual, etymological, & structural methods to extricate and order data from printed sources, forming a species of unstructured information. The majority mentioned above are assortments of analyzing data which can be utilized for business decisions.

• Rajini G and Akshaya B are Professor & Head-MBA (Integrated), School of Management Studies, Vels Institute of Science Technology and Advanced Studies, (Deemed to be University) Chennai,India. dr.rajini.gf@gmail.com, rajini.sms@velsuvniv.ac.in b Student ,IV year B.Tech (CSE with Specialisation in Bio- Informatics), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India. akshaya.b2016@vitstudent.ac.in, akshaya.b1811@gmail.com

2. REVIEW OF LITERATURE

2.1 Social Media Analytics

Social media analytics as about gathering information from several social media websites and breaking that information with the aid of analytics to settle on business conclusions. The most broadly use of this analytics is mining sentiment of the customer to bolster advertising as well as customer service activities. The primary phase in such an initiative is to figure out for which business objectives’ the information will profit. Typical goals include increasing incomes, decreasing service costs, receiving feedback products and benefits, and improving public opinion of a specific item or business division. Marina Bağıc Babac, Vedran Podobnik, (2016) investigated who, how and why participates in creating content at football websites. The analysis was done based on the comments published by the users on their pages of Face book regarding top five Premier League football clubs held during the 1st week and the 19th week of the season from 2015-2016. Sentiment analysis was done based on the comments posted on Face book pages from the perspective based on gender. The result showed similarities between men and women football fans in social media activities with regard to the expressions. Both genders express fear, anger considered as hard emotions similarly whereas they differ significantly in expressing joy or sorrow considered as soft emotions. When the objectives of the company have been recognized, organizations should establish key performance indicators (KPIs) to assess the business analytics data impartially. Customer commitment, tweets, and notices of an organization’s name were some of the business metrics identified from social media analytics. With the help of social media monitoring, organizations can also take a note on what number of individuals follow the presence of the company on Facebook and the occasions in which individuals communicate among themselves with their profile in social media by sharing or loving their posts. In 2015, Rutilio Rodolfo Lopez Barbosa extract-
ed near about one million reviews and also numerical ratings of hotels from TripAdvisor website in seven cities across four hotels. Researchers classified positive reviews and negative reviews with the help of three sentimental analysis tools. The percentage calculated from positive reviews was used to predict numerical ratings which are then compared to the actual rating done by the public on the website. Positive and negative reviews classified using tools correlated positively with numerical ratings. For most of the cities, the ratings predicted expressed a reasonable agreement with actual ratings. In case of hotels having less than 50 to 60 percent of reviews available in the website then the predictions were less reliable. This results validate that the use of sentiment analysis is suitable to transform unstructured qualitative data into quantitative data on user opinion. Sentiment analytics was an advanced sort of social media analysis. This training includes sophisticated natural-language-processing, machine learning algorithms parsing the content in an individual's post found in social media about an organization on comprehending the significance exists behind that individual's statement. These algorithms can make an evaluated score of the people's emotions to toward an organization is dependent via web-based networking media communications and how well the organization connects with customers was learned by the executives through the reports offered. In 2016 Ricardo Limongi França Coelho, Denise Santos de Oliveira, Marcos Inácio Severo de Almeida, learned about the effect of post type which are advertising, occasions, fan, events, promotion and information based on two interaction measurements in social media. Interactions were likes and comments. The researchers included famous social media which are Facebook and Instagram, and in business profiles of five unique segments such as food, hairdressing, women's footwear, body design, contemporary gym wear. A total of 1849 posts from five different organizations which comprises of 680 posts on Facebook and 1169 posts on Instagram. Posting period of eight-months were considered. Likes and comments are the dependent variables of this study and post typology, segments, week period, month, characters and hashtag were independent variables. Regression analysis was used to explore the relationship between the dependent and independent variables. It was seen that the post types events and promotion prompted a more prominent involvement of followers in Instagram, specifically. In Facebook, the events post type was just huge in the like's interaction. In both the virtual media there exist a significant relevance for food and body design segment. This shows the preference of the user including their everyday lives, for this situation, having a tattoo done or seeing a photograph of a sweet was found.

2.2 Classification of data
According to David Dietrich, Barry Heller & Beibei Yang. (2015) Data could be classified as the following:

Structured data: Data containing a characterized information type, arrangement, and structure (that is, exchange information, online analytical processing [OLAP] data cubes, conventional RDBMS, CSV records, and even straightforward spreadsheets). Semi-structured data: Textual information records with a detectable pattern that empowers parsing (such as Extensible Markup Language [XML] information documents that are self-depicting and characterized by a XML blue-print). Quasi-structured data: Textual information with inconsistent information arrangements that can be designed with exertion, tools, & time (for example, web click stream information that may contain irregularities in information estimates and configurations). Unstructured data: Data that has no intrinsic structure, which may incorporate text documents, PDFs, pictures, and video.

2.3 Unstructured and Structured Data
Organized data usually found in relational databases (RDBMS). Fields always store length-delineated information such as telephone numbers, Social Security numbers, or ZIP codes. Even content strings of variable length like names are contained in records, making it straightforward to seek. Data might be man-or machine-generated as long as the information is inside a RDBMS structure. These format is prominently accessible both with human created inquiries and through by means of algorithms utilizing kind of information and field names, for instance, alphabetical or numeric, money or date. Other than structured data unstructured data is the whole remaining data. Unstructured information always has inner structure however isn't evenly organized by means of pre-characterized information models or diagram. Unstructured data might be printed or non-printed, and human-or machine-created. Mostly they could be stored inside a non-social database like No SQL. There are various kinds of social media analytics tools for analyzing unstructured data found in tweets and Face book posts. Furthermore to text analysis, numerous enterprise-level social media analytics tools will collect and store the data. Some of these tools originate from specialty players, while increasingly customary enterprise analytics programming sellers offer bundles committed to social media intelligence. As progressively social media analytics depend on AI, prominent open platform like R, Python and Tensor Flow serve as social media analytics tools.

2.4 Significance of Social Media Analytics
There is abundant data available in social media (Search business Analytics). In the previous decade, enterprises paid lump some of money to the companies who are into market research to survey customers and to conduct focus group study to get the insights of the consumers about the product. Now those informations are readily available in various social media platforms through the post made by the consumers. The issue is, this data is available as free content and common language, the type of unstructured information which analytics algorithms got customarily. But today the advancement of machine learning and artificial intelligence have turned out to be simpler for organizations evaluating in a versatile manner the data viable from the post in social media. Thus enterprises were able to extricate data about the view of public regarding a company's brand, buyers like & dislike of a product and by and large where markets are going. Social media analytics made feasible for organizations evaluating this without utilizing less solid surveying and also focus groups.

2.5 Widely used Social Media Analytics Tools
1. Followerwonk
2. ViralWoot
3. Google Analytics
4. Cyfe

2573
3. METHODOLOGY

One Company is taken as a sample and its Competitor company’s keywords were extracted (the contents with hash tags) In 2018, Statistica.com estimated nearly 326 million social network users from India were identified which is twice of 168 million users in the year 2016. That is why we use those resource in our study to obtain a dataset and that represents the social media. Like families, clean datasets are all indistinguishable yet every untidy dataset in its own specific manner. Clean datasets gives a standardised method to connect the structure of a dataset (its physical format) with its semantics (its meaning). In our framework of tidy data, each and every row representing observation, every column representing variables and every entry made into the cells of the data frame are considered as values. Ramnathv in his website explained that crude information in reality is regularly untidy and inadequately organized. Moreover, it might lack fitting details of the investigation. Correcting data set up can be a perilous exercise since the first crude information would get overwritten and there would be no real way to review this procedure or recoup from slip-ups set aside a few minutes. A decent data practice is keep up the first information i.e the original data, however a programmatic script should be used to clean it, fix mistakes and spare that cleaned dataset with further investigation/analysis.

Tidy data was created so that it meets the following expectations:

- Observations are placed in rows
- Variables are placed in columns
- Contained in a single dataset.

Thus Tidy data helps to do data analysis with ease in this research.

Authors scheduled posts in the facebook page of a Company, with 3 posts a day—one in the morning, one in the evening and one post evening, to analyze the traffic during the periods.

- After observing for 2 weeks, it was analyzed for the type of traffic through google analytics, and arrived at certain insights.
- Given below are screenshots from the google analytics and the insights got from them of Company XYZ (Name concealed) official facebook page.
- Google Analytics For The Study Organisation: Using the official company’s mail id, google analytics was used to work on the social media analytics.

4. FINDINGS

4.1 Google Analytics results

Returning Visitor – 22% : Bounce Rate : 50%, new visitor – 77% : Bounce rate : 30%.

New Visitor bounce rate must be reduced – Home page should target details such as achievements, articles, workshops (Table 1).

Desktop users – 85%, Mobile – 12% ; Desktop – out of 59 users, 51 are new users.

Mobile – 9 out of 9 are new users. Using Desktop and not mobile (85% vs 12%) shows that people who use social media not just for entertainment have also visited our page / the posts in fb - Inference_positive – Keep posting in social media (Table 2).

Session duration - one to two mins - Ratio of Sessions : Page Views = 1:4, In a session a person visits 4 pages at an average which is not bad, considering other time ranges, neglecting 0-10 secs due to high bounce rate in that period, the ratio is consistently 1:2 (11 to 60 secs) or 1:4 (60+ secs). If a person doesn’t find what he wants in the first go (the first page), then he keeps jumping to other pages. 2 pg in a 1 min search and 4 pg view in a 2-3 min search is reasonable so, Inference – Can get feedback from the user if he had found what he had searched for [ref 1 row 4]. For >180, Users Flow cannot be found (Table 3).

<table>
<thead>
<tr>
<th>Table 1. Behaviour : New vs Returning</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Type</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1. New Visitor</td>
</tr>
<tr>
<td>2. Returning Visitor</td>
</tr>
</tbody>
</table>
Table 2. Mobile: Overview

<table>
<thead>
<tr>
<th>Device Category</th>
<th>Acquisition</th>
<th>Behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Users</td>
<td>New Users</td>
</tr>
<tr>
<td></td>
<td>% of Total</td>
<td>% of Total</td>
</tr>
<tr>
<td>1. desktop</td>
<td>70 (100.00%)</td>
<td>61 (100.00%)</td>
</tr>
<tr>
<td>2. mobile</td>
<td>59 (84.29%)</td>
<td>51 (83.61%)</td>
</tr>
<tr>
<td>3. tablet</td>
<td>9 (12.86%)</td>
<td>9 (14.75%)</td>
</tr>
</tbody>
</table>

Table 3. Session Duration – 85 ; Page Views – 238 (Engagement)

<table>
<thead>
<tr>
<th>Session Duration</th>
<th>Sessions</th>
<th>Page Views</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10 seconds</td>
<td>34</td>
<td>37</td>
</tr>
<tr>
<td>11-30 seconds</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>31-60 seconds</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>61-120 seconds</td>
<td>21</td>
<td>81</td>
</tr>
<tr>
<td>121-180 seconds</td>
<td>6</td>
<td>39</td>
</tr>
<tr>
<td>181-240 seconds</td>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>241+ seconds</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

From making predictions about the ruling party during elections to identifying and helping depressed social media users, sentiment analysis is being used very broadly in different fields. It has become a central part of social networks, especially for organizations with certain feedback from their clients, customers and the public (Table 4).

Table 4. Competitor Analysis (Excel Sheet Screenshot)

4.2 Sentiment analysis results
A broadfield of study which specifically deals with analysing individual’s opinions (sentiments), grouping large variations of them into fewer categories, and form patterns that are usually not noticed by the naked eye. In simple terms, it makes an organisation’s insight making much easier. Other than the available client data, we have to gather all the necessary data. Here is where all our company pages on
twitter, facebook, linkedIn, reviews and ratings, discussion forums, blogs, etc. come into the picture. To obtain this information that is unstructured, we can use different APIs, crawlers and other data mining techniques.

Now that we've got the data, (Table 5) it must be cleaned to identify and eliminate non-textual or irrelevant content, punctuations and check for spellings. This is where we extract data and assign tokens to the tags. Tokens can be words, phrases, or even sentences that a sequence of strings is broken down into. They are tagged as different Parts of Speech (PoS) like verb, noun, etc. based on the context and this called PoS tagging. This is done to identify the purpose of the word in the given sentence. At this stage, we have clean and relevant data. Now, we proceed with certain computational methods for language processing like Stemming and Lemmatization, where all the magic behind text processing happens. Stemming deals with the removal of suffixes to give a root word. For example, if we have the words ‘great’, ‘greater’, ‘greatest’ and so on, they are all considered under the same root word: great. So every time our parser comes across these words, it maps down to the root word. Lemmatization is where the grouping of words according to meaning or context is taken care of. So let us say our document has the words ‘good’, ‘better’ and ‘best’. These words would generally be considered as different words, but contextually, they provide the same reference.

Also, at this stage, it is very important to handle negations. Words that negate a phrase like ‘not’, ‘no’, ‘never’, etc. play a vital role as they can change the opinion entirely, which is why we need to handle them carefully based on the position of the words.

The next step is to identify the sentiment, weigh its importance and understand the nature of the opinion. For this stage, we can either choose a lexicon model which deploys dictionaries of words clarified with their polarity in semantics and sentiment quality or a Machine Learning model that requires creating a model by training the classifier with labelled examples. Here, we have to gather a dataset with positive, neutral and negative examples to take out the features from them, train the algorithm based upon the same. By now, we’ve arrived at a classification of the data as positive, negative and neutral sentiments, with which we can arrive at the sentiment ratio. This can further be deep dived into. Let us say that Mr. X, working in one of our restaurant franchises, gets a lot of positive feedback. This positivity is attributed to the man, who can be considered as an entity. Entities can be the names of people, locations, organisations, or a particular commodity. Thus, entity sentiment analysis can help get to the root of the nature of opinion and help in improving efficiently. Also, we are always going to face comparisons. There could be several ratings which contrast our organization with a competitor, and that would definitely be something to worry about. These are considered to be dependencies, and they are to be handled carefully as well. So that’s about it! Make use of the data available in an appropriate manner to make the best fried rice that’s ever been made!

After studying about sentiment analysis, the authors performed it on the competitor company’s keywords that were extracted from their social media content (the contents with hashtags), to find ratio of positive : negative words used in their social media content.
1. Totally, 15 competitor companies were set as target with 50 keywords for each.
2. Keywords were extracted from the Social Media
 - Facebook
 - Twitter
 - LinkedIn
 - Official Web Page of the company
3. A list of standard positive and negative words, was downloaded for lexicon analysis and they were stored as a text file, in the documents directory (where the R is extracted). These files are by default saved in that location, in order to access any text files from R Studio, it is better to save it in the same directory where R Studio and R were installed.
4. Then the keywords from the competitor company were also stored in a text file, in the same location.
5. Now they were matched along with the positive and negative standards and the number of positive and negative words, their location, their ratio were all found out.

4.3 R CODE:

```r
> getwd()
[1] "C:/Users/Bala/Documents"

> poswords<- scan('tri.txt',what='character',comment.char=';')
Read 2006 items

> negwords<- scan('neg.txt',what='character',comment.char=';')
Read 4783 items

> keywords
[1] "Data""TheConnectedMind""DayOfService""DayOfService"
[5] "Decision""Science""DayOfService""musigma"
[9] "musigmauniversity""Dataengineering""musigma""columbusprogram"
[13] "thursdaylearninghour""DataScience""thursdaylearninghour""GreatcodingFridays"
[17] "businesscommunication""ProblemSolving""businesscommunication""forecasting"
[21] "Client""Base""decisions""psychology"
[25] "analytics""Founderpicks""data""taboo"
[29] "gamification""musigmauniversity"

> match(keywords,poswords)
[1] NA NA
5. CONCLUSION
Though we are able to find out whether there were positive/negative terms present as keywords (Table 6), we cannot arrive at the solution that if a negative word is present, then it implies negativity. This is because what/whom the word refers to depends upon the sentence structure, that gives different meanings in different statements. Often the keywords are technically related, thus they might be a part of standard positives/negatives. Keywords from the website, has more number of positive words match, as compared to keywords got from social media. Scopes are to find out the influential words, from any set of keywords. Updating website’s metadata tag words: After a long process of finding out the most influential keywords, the company’s official website’s code was harnessed, and the metadata tag words under each section were changed, according to the finalized keywords.

REFERENCES


[16] https://searchbusinessanalytics.techtarget.com

[17] https://blog.bufferapp.com
