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A Prey-Predator Fishery Model With A Relative 
Size Of Reserved Area 
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Abstract: A prey-predator fishery model having reserved and unreserved area, with prey dispersal in a two-patch environment, has been proposed and 
investigated in this work. The logistic growth is considered for the fish species in each area. Holling type-II predator functional response has been 
considered. Relative size of the reserve and unreserved area is responsible for increase as well as decrease the density of the fishes. The harvesting is 
applied on both prey in an unreserved area and on predator. The dynamics of the proposed system has been explored locally. The thresholds for 
existence of biological equilibrium points are obtained. Optimal harvesting policy has been examined by the Pontryagin's Maximum Principle. Finally, 
theoretical results acquired and verified with the assistance of numerical simulations through MATLAB. 
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1. Introduction 

The depletion of renewable and non-renewable 
resources at an alarming rate is causing a great concern 
in all over the world. These resources are being 
depleting due to over exploitation, industrialization, fast 
urbanization and increasing population etc. It is also well 
known  that many species have already become extinct 
and many others are at the verge of extinction due to 
several natural or man-made reasons like over 
exploitation, indiscriminate harvesting, over predation, 
environmental pollution, loss of habitat due to 
mismanagement of natural resources,  etc. But for the 
ecological balance, it is very important to keep these 
resources at an optimal level.  So, Marine protected 
areas (MPAs) are a developing instrument for handling 
marine assets. The inspiration for setting up MPAs 
initially originated from nations, for example, Australia, 
New Zealand, and Seychelles. Many countries 
recognized the economic potential of their marine 
assets. As the most recent examinations reveal that 
there is an expanding require the amplification of marine 
protected areas in light of the fact that MPAs can 
improve yield as well as secure stocks and sustain 
fishery attainability. As the countries start to look more 
towards the ocean for financial development and new 
food sources, due to this fact it leads to huge pressure 
on fishing in the world’s Ecosystem. Consequently over 
exploitation of marine assets is a serious and immediate 
worldwide issue. Hence, formation of marine reserves or 
no fishing zones epitomise a significant instrument for 
future fisheries administration and supportable 
improvement of biological system. Hartmann et al. [1] 
allowed a better management strategy to investigate the 
economic optimality of implementing an MPA. Sumalia 
[2] indicated that MPAs can protect the discounted 
economic rent from the fishery.  
 
 
 
 
 
 
 
 
 
 

Takashina et al. [3] have analyzed the potential impact 
of building up MPAs on marine biological systems and 
their analyse revealed that it can sometimes result in an 
extensive decline or even extinction of a species. T.K. 
Kar and H. Matsuda [4] inspected the effects of MPAs 
and harvesting from both economic and biological 
perspectives on resource populations. They 
demonstrated that protected patches are successful 
methods for conserving resource populations, however 
elimination can't be forestalled. Kunal Chakraborty et al. 
[5] have considered a prey–predator type fishery model 
with prey reserved area. Relative size of the reserve is 
taken as control to contemplate optimal sustainable yield 
policy. B. Dubey et al. [6] have proposed a scientific 
model and examined to study the dynamics of fishery 
resource, have two zones of the aquatic ecosystem, one 
free fishing zone and the other reserved zone. They 
have investigated that appropriate equilibrium level 
never disturbed under continuous harvesting of fish 
species outside the reserved zone. Yunfei Lv a et al. [7] 
proposed a prey-predator harvesting fishery resource, 
model. Holling type II predator functional response is 
considered. The results demonstrate that so long as the 
prey population in the reserved zone does not extinct, 
the both prey dependably exist. B. Dubey [8] examined 
that the reserve zone has a stabilizing effect on 
predator-prey species. Keeping this in view and 
literature considered earlier, the present paper deals 
with a prey predator framework where a fractional part 
(0 < s < 1) of the prey population is considered to 
regulate the system. 
  

2. The Mathematical Model 
A habitat is considered in an ecosystem with prey 
(fishes) dispersal in a two-patch environment, one is 
assumed to be a free fishing zone and other is a 
reserved zone. Both zones are supposed to be 
homogeneous. Also, there is a predator (fish) in the 
ecological system that is sustaining on prey (fish) in the 
unreserved zone. Holling type II predator functional 
response is considered. Here, it is assumed that the 
prey (fishes) species migrate between the two zones 
randomly. Harvesting of both species, prey in   
unreserved area and predator is taken. Unit population 
distribution area is considered in this research work. 
Here s (0<s<1) and 1-s is assumed for reserved and 
unreserved area respectively.  
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Keeping every one of the presumptions in view, a model 
is governed by the following system of ordinary 
differential equations. 

1 1 2 1 1

1
1

(1 )

x zd x x
r x m x m y q E x

d t K s a x



     

 

 
 
 

 

2 1 2
1

d y y
r y m x m y

d t K s

   
 
 
 

 

2

2 2
                                       (2 .1 )

x zd z
d z q E z

d t a x


   



                                  

 
 
 

 
In absence of migration of fish population from the 

reserved zone to the unreserved zone  

i.e.  2 0m 
 
and  

1 1 1 1
- - 0 ,r m q E   then

0 ,
d x

d t


  

Correspondingly, if   there is no relocation of the fish 

population from   unreserved area to reserved area i.e. 

 
1 2 2

0  a n d  0 ,m r m    then 0
d y

d t

   

This implies the fish species will be extinct from both the 

unreserved area and reserved area. To protect the prey 

(fishes) from annihilation, movement of fish species from 

both the patches are essential. Subsequently, all through 

our investigation, it is assumed that 

1 1 1 1 2 2
0   0a n d (2 .2 )      r m q E r m    

 
 

3. Boundedness and Stability Analysis 
 

Theorem 3.1 All the solutions of system (2.1) are always 

bounded. 

Proof: Let 
  

1

2

 an d  0x y z


 


     

Then
 

1

2

d d x d y d z

d t d t d t d t





  
 

  

 
 

2

2 1

2 21 1 1 2

2

    1 - -

1

r yd x
r x q E x r y d q E z

d t K s K s





    



 

 

 

     

                  ( )   (3 .1 )
2 2

                            
d

d q E G

d t


  

 
Where 

  
   

2

1 1 1 2 2 2 2 2

1 2

21

4 4

K s K s
G r q E d q E r d q E

r r


      

 
Applying the theory of differential inequality (Birkoff and 

Rota, 1982), the following inequality will be obtained    

                      2 2

2 2 2 2

0 ( ) ( 0 )
G Gd q E t

t e

d q E d q E

 
 

   

 

 

 
 

  

               As ,t    from above expression we may conclude that the 

solution space (x, y, z) is bounded in the region
3

,R
 .

Hence the 

theorem.  

 

3.1 Analysis of the model at equilibrium points:  

 

 Possible equilibria of the system (2.1) are: 

I.   ,
0

0 ,  0 ,  0P (extinction of all species) 

II. 1 1 1
( , , 0 ) ,P x y (Predator-free equilibrium point)    

III.    
2 2 2 2

( , , ) ,P x y z (The nonzero -equilibrium point) 

 

The predator-free equilibrium point 
1 1 1
( , , 0 )P x y

 
 From Ist equation of system (2.1), we obtain 

 
 

2

1

1 1 1 1

2

1
 

1

         (3 .2 )
r x

y m q E r x

m K s

   



 

 

 

Substitute the value of y in 2
nd

 eq. of (2.1)   

After simplification 

3 2
0    (3 .3 )                    A x B x C x D   

 
Where 

    
2

2 1 2 1 1 1 1 1
, 2 1A r r B r r K s m r q E    

    
        

2 2

2 1 1 1 1 1 2 2 21 1C K s r m r q E s r m r m      

     
23

2 2 2 1 1 1 1
1D K m s r m r m q E    
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There is one change of sign in above cubic equation, so 

one positive value say (x1) will be obtained. Thus value of 

y1 can be computed from (3.2), further  y1 exist if following 

inequality hold 

   
1 1 1 1

1

1

  

1
(3 .4 )  

K s r m q E
x

r

 





 
Hence, 

1 1 1
( , , 0 )P x y exist, provided condition (3.4) is 

satisfied.   

For the Interior equilibrium point
2 2 2 2

( , , )P x y z  

From the 3
rd

 equation of (2.1), we get
  

                

 

 

 

2 2

2

2 2 2

                                 (3 .5 )
a d q E

x

d q E




 
 

 x2 will be positive provided

               

 

                               
2 2 2

(3 .6 )                   d q E  

Substitute the value of x2 in 2
nd

 eq. of (2.1), Following 

quadratic equation will be obtained 

 

1 2 2 3

2

2
0A y A y A    

Where 

 
 

 

1 2 22

1 2 2 2 3

2 2 2

,   ,   

m a d q Er
A A m r A

K s d q E 



   

 

  

 

 
2

2 2

2 2 2
2 1 2

2

             

1

2

4
2

 (3 .7 )

m r
K s

y r m r m x
r

K s



  



 
  
  
  
  
 

    

y2 will be positive, provided 

 
2 2 2 2 2

,  0 (3 .8 )              d q E r m    
 

Using (3.5) and (3.7), z2 will be calculated 

 

2

2 1 2

2 1 1 1 1 2 2 2

1
(1 )

 (3 .9 )
a x r x

z r m q E x m y
K s


    



 

 
    

z2  will exist,  provided 

 

 1

2

1 2

1 1 1 2 2 2
(3 .1 0 )       

(1 )

r x
r m q E x m y

K s
    



Hence,
2 2 2 2

( , , )P x y z  exists provided conditions (3.8) and 

(3.10) are satisfied. 

 

3.2 Stability Analysis 

 

The variational matrix of the system of equations (2.1) is 

given below.  

 

2
1 1 1

1 1 1 1 22
1 ( )

2
2

( , , ) 0
1 2 2

2 2
0

2 22
( )

r x a z x

r m q E m

K s a xa x

r y

J x y z m r m

K s

a z x

d q E

a xa x

 

 

    

 

  

  



 

 

 

 

 

 

 

    
 

Theorem 3.2 If the equilibrium point  
0

0 ,  0 ,  0P exist, 

then it will be always unstable.

 

Proof: One of the eigenvalues is       

            1 2 2
0d q E      at  

0
0 ,  0 ,  0P  

Other two eigenvalues are given by 
 

     
2

1 1 1 1 2 2 1 1 2 2 1 2
0r m q E r m r q E r m m r           

 

   1 1 1 1 2 2
0r m q E r m    

 
(By assumption) 

 

So, all the eigenvalues of the above characteristics equation 

have not negative real parts as there is at least one change 

of sign. Therefore, the equilibrium point  
0

0 ,  0 ,  0P  is 

always unstable.  

Biological Meaning: It is concluded that regardless of 

whether the system is misused ceaselessly in the 

unreserved zone, the prey or the predator populace persist 

and don't wiped out for sufficiently long time. 

Theorem 3.3 If the Equilibrium point 
1 1 1
( , , 0 )P x y

 
exists 

then it will be locally asymptotically stable provided 

 

 2 2

1

2 2 2

a d q E
x

d q E




 

  

Proof: One of the eigenvalue is 
 

      

2 1

1 2 2

1

,
x

d q E
a x


    

  
It will be negative 

  2 2

1

2 2 2

          if               (3 .1 1 )
a d q E

x

d q E





 

 

Other two eigenvalues are given by 

 

 

2 1 1 2 1

1 1 1 2 2

1 1 2 1

1 1 1 1 2 2 1 2

2 2

1
1

2 2
0

1

r x r y
r m q E r m

K s K s

r x r y
r m q E r m m m

K s K s

       



       



 

 

 

    
    

     
 

Both the eigens values of above quadratic equation will be 

negative  

 

 

1 1 2 1

1 1 1 1 2 2

1 1 2 1
 

1 1 1 1 2 2 1 2

2 2
,     

1

2 2

1

        (3 .1 2 )

r x r y
r m q E r m

K s K s

r x r y
r m q E r m m m

K s K s

     



     



   
   

    
 

Thus equilibrium point 
1 1 1
( , , 0 )P x y  of the system (2.1) is 

locally asymptotically stable provided, (3.11) and (3.12) 

hold. 

 

Theorem 3.4 For the system (2.1), if the Interior 

equilibrium point 
2 2 2 2

( , , )P x y z  exists, is always locally 

asymptotically stable provided

1 3 1 2 3
0 , 0  a n d  - 0   w h e re  C C C C C  

 
1 2 3
,  a n d  C C C

are given in the proof. 
 

Proof: The characteristic equation of variational matrix of 

the system (2.1) at 
2

P is
      

        

3 2

1 2 3
0           (3 .1 3 )         C C C     
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Where 

 
   

1 2 2 2 1 2 2 2 1 2 1 2

1 2

2 2 2 2
1

m x r y r x m y z a z
C

y K s K s x a x a x

 
     

  

     

1 2 2 2 1 2 2 2 1 2 1 2 1 2 2 2

2 1 22 3
1

2 2 2
2 2

m x r y r x m y z a z z x a

m m

y K s K s x a x
a x a x

C
   

      

 
 

 
 

 
 

  
 

 

1 2 2 2 1 2 2 2

3

2 2

3

m x r y z x a
C

y K s a x

  
  

   
 

Therefore by the Routh-Hurwitz criteria (3.13) will have 

negative real parts iff
1 3 1 2 3

0 , 0  a n d  - 0C C C C C    

 

   
   

1 1

1 1 1 1 2 2

2 2
2 2

1 1

 

 P ro v id e d h o ld s
r x r x

r m q E r m

K s K s

     

 

 

Hence the interior equilibrium point 2 2 2 2
( , , )P x y z

will be 

locally asymptotically stable.  

Biological Meaning: It is examined through the equations 

(3.5) and (3.7) that if the conversion coefficient of prey to 

predator and migration rate are sufficiently high, then all 

the three species will coexit and system will stable.  

 

4. Bionomic Equilibrium 
 

The bionomic equilibrium is said to be achieved if the 

revenue received by selling the harvested biomass is equal 

to the total cost involved in harvesting. The economic rent 

(revenue at any time) is given by 

                     
( ) - ( )T R E T C E   

Let 
1

c and 
2

c be the harvesting cost per unit effort, p1 and p2 

be the price per unit biomass of the prey in the unreserved 

area and predator respectively. Therefore, the net economic 

revenue at any time t is given by  
 

                1 1 1 2 2 21 2
- -p q x c E p q z c E  

 
The Bionomic equilibrium point

 
will be obtained by 

solving the following simultaneous equations    

            

1

1 1 2 1 1
1 0                 

1

(4 .1 )
x zx

r x m x m y q E x

K s a x


     

 

 

 

 

 

            
1 2

1 0                                                    
2

(4 .2 )
y

r y m x m y

K s

   
 
 
 

                                                               

            

2

2 2
                                                        0  (4 .3 )

xz
d z q E z

a x


  





           

             
   

1 1 1 1 2 2 2 2
0                         (4 .4 )p q x c E p q z c E     

 
 

Case 1: If 2 2 2
c p q z  and 1 1 1

c p q x
                               

Here the cost of harvesting of predator is greater than the 

revenue received and cost of harvesting of prey (fish) is 

less than the revenue. Hence the harvesting of a predator 

will be stopped and the only prey (fish) harvesting (in an 

unreserved area) remains operational. Thus we have 
   

1

1 1

0 ,
2

E
c

x
p q





  

           

 

   
2

2 1 1

2 2 2 2

2 1 1

1

2
4

  

2

(4 .5 )
r m cK s

y r m m r

r K sp q

    


 
  
  
 

  

2 2
0  p ro v id e d                            (4 . 6 )y r m 

 

 Since 
1 1 1 1 1

(1 )c p q x p q K s     

Hence  

1 1

1
1 0

(1 )

c

p q K s

 


 

 1
,z E

 

will be any point on the following  line  

   

1 2 1 1
1 -

1 1 1 1 1
(1 - ) 2

1 1 2 1

1

2
42

2 1 1
- -

2 2 2 2

1 1

c m K s p q

m z q E r

p q K s r c

r m c

r m m r

K s p q

   

 

 

 

 

 
  
  
 

 
   
 

Case 2: If 1 1 1 2 2
  

2
a n dc p q x c p q z 

  
Here the harvesting cost of prey (in unreserved area) is 

greater than the revenue received and harvesting cost of 

predator is less than revenue. Hence, the harvesting of prey 

will be ceased and only predator harvesting remains 

operational. Thus, we have
 

2

1

2 2

0 ,                                     (4 .7 )
c

E z
p q

 
 

 

After simplification 

 

 

2

2

2 2

1

1
                                        ( 4 .8 )

r y
x r m

m K s

  

 

 
   

 
Substitute the value of (4.8) in (4.1), following 6

th
 degree 

equation in y will be: 

 

6 4 3 2
0

51 2 3 4 6
(4 .9 )       B y B y B y B y B y B     

  

Where 3 1 2 2
E a m r m    

    

3

1 3

1 3 2 2
1

1

r r

B

K m s s

 
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Thus, at least one positive value of y exists and substitutes 

this value in (4.8) , (4.4), x and 
2

E will be obtained. 

Case 3: If 1 1 1
 c p q x and 2 2 2

 c p q z

 In this case, the fishing cost exceeds the revenue for both 

the prey (fish) in unreserved area and predator (bird), then 

we will obtain negative economic rent. Thus no harvesting 

will be done. 

Case 4: If 
1 1 1

 c p q x and 2 2 2
c p q z

   
Here, the revenue received is greater than the cost of 

harvesting of both the species i.e. prey (fish) in the 

unreserved area and predator. Hence, the harvesting of 

prey in unreserved area and predator is possible. Thus the 

nontrivial Bionomic equilibrium point  

 , , , ,
1 1 2

B x y z E E
    
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5. Optimal Harvesting Policy 
 

In this section, the objective is to maximize the present 

value of “J” of a continuous time stream of revenue given 

by 

    ( ) ( )    
1 1 1 1 2 2 2 2

0

(5 .1 )
t

J e p q x c E t p q z c E t d t





   

 

Here δ denotes the instantaneous annual rate of discount. 

By using Pontryagin’s maximal principle (Clark [1]), we 

propose to maximize (5.1) subject to the state equations 

(2.1). The Hamiltonian function for the problem is given 

by
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Where λ1, λ2, λ3 denoted as the adjoint variables and the 

control variables
1

E  and 
2

E
 
 appear linearly in the 

Hamiltonian function H. 

According to Pontryagin’s maximum principle 

    

31 2
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On taking the interior equilibrium
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From the equations of (5.2) 
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Where  
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From (5.3) and (5.6) equation of the singular path is 

obtained. 
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Where equation (5.7) can be written as 
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Then positive root of F(x2) =0 gives the optimal level of 

fish population in unreserved area at
2

x x


  in the 

interval  0 1x K s


     

If the following inequalities hold 
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Knowing the value of 
2

,x x
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 will be 

obtained from (3.7) and (3.9). Further optimal level of 

harvesting efforts will be computed from following 

equations.  
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From (5.3), (5.4) and (5.5), it is observed that for optimal 

equilibrium, ( )( 1,  2 ,  3 )t i
i

  is independent of  the time. 

Hence, they remain bounded as t →∞ 

6. Numerical Simulations 
We choose different set of parameters. 
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For this set of parameters, equilibrium point  P2(0.0765, 

16.229, 52.2501) exist and it is locally asymptotically stable 

by stability Theorem 3.4. Further it will always be globally 

stable in the absence of limit cycles. Here P1 exist but 

unstable and P0 is always unstable (Fig. 1).                     

 
Fig. 1: The Phase diagram showing the global stability of P2 

for data set (6.1) 
 

Now on considering the variation in the relative size of 

area (s), keeping all other parameters same as (6.1) (Fig. 2, 

3, 4). 

             

 
 

Fig. 2: Time series plot of x (t), for same data set as (6.1) 

changing relative size of area (s) 

        

 
 

Fig. 3: Time series plot of y (t), for same data set as (6.1) 

changing relative size of area (s) 
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Fig. 4: Time series plot of z(t), having same data set as (6.1) 

changing relative size of area (s) 

 

Now on changing migration coefficients, keeping all other 

parameters same as (6.1) (Fig. 5, 6,7). 

 
 

Fig. 5: Time series plot of x(t), having same data set as (6.1) changing 

migration coefficients 
 

 
 

Fig. 6: Time series plot of y(t), having same data set as (6.1) 

changing migration coefficients 
 

 
 

Fig. 7: Time series plot of z(t), having same data set as (6.1) 

changing migration coefficients 

 

Further changing harvesting efforts rates (E1, E2), keeping 

all other parameters same as (6.1)  

(Fig.  8, 9). 

 
 

Fig. 8: Time series plot of x (t), having same data set as (6.1) 
changing harvesting efforts rates 

 

 
 

Fig. 9: Time series plot of z(t) having same data set as (6.1) 

changing harvesting  efforts rates. 

 

7. Conclusion 
A prey-predator fishery model, with prey dispersal in a 

two-patch environment, have been proposed and analysed 

in the present paper. We observe that as the area under 

reserve region increases, the density of prey in reserved 

area as well as predator increases whereas density of prey 

in unreserved area remains same (shown in fig 2, 3, 4). 

Further, we observe that as the migration coefficients from 

unreserved area to reserved area and vice versa decrease, 

the density of prey in unreserved area remain stable, 

density of prey in reserved area increases and density of 

predator decreases (shown in fig 5, 6, 7). It is concluded 

that both increase in area size and increasing migration rate 

are responsible for the survival of predators otherwise 

predator will eliminate from the system. It is also examined 

that as the harvesting efforts rate for predator increases 

then predator population will extinct (shown in fig 8, 9). It 

is also examined that if the conversion coefficient of prey 

to predator and migration rate is sufficiently high, then all 

the three species will coexist and system will stable.  

Optimal harvesting policy has been discussed by 

Pontryagin’s maximum principle. Further It has been 

concluded that with the increase in discount rate, the 

economic rent decreases and as discount rate tends to 

infinity, then the economic rent even may tend to zero. 
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