Soil Data Classification Using Attribute Group Rank with Filter Based Instance Selection Model

G.Murugesan, Dr. B.Radha

Abstract— Due to the advancement of automation through data mining and machine learning algorithms, research on agricultural components such as soil, crops, rainfall and price prediction have gained massive attraction from research communities. Data mining along with machine learning techniques have become the most dominating field employed in almost all the research areas pertaining to knowledge acquisition. The nutrient status of the soil along with environmental and climatic conditions are directly involved in agricultural production. Though the farmers have wide practical knowledge about the crops, the natural changes happening at the earth’s surface and unpredictable climatic changes and rainfall normally do not support crop productivity. In agriculture, the soil is the foremost important factor that includes several physical parameters such as pH value, organic carbon present in the soil along with primary macronutrients and secondary micronutrients and thus the knowledge about the quality of soil reveals the type of crops to be cultivated and the amount of yield produced. In this paper, a novel classification algorithm is proposed that uses attribute group rank with filter-based instance selection for effectively classifying the soil data. Experiments have been made with the soil data of the Pollachi region in Coimbatore district, Tamil Nadu state, India which is a popular market place for various grains, vegetables, and fruits. The classification accuracy of the proposed model is also compared with the other classification models. From the result analysis, it is proved that the proposed model provides a better accuracy rate for soil data.

Index Terms— Agriculture productivity, soil data, attribute group rank, instance selection-based learning, macronutrients, micronutrients, classification accuracy, filter based instance selection.

1 INTRODUCTION

Agriculture plays a vital role in the Indian economy and provides occupation to about 75% of the population. As agriculture is considered to be the backbone of the country, and as it reflects the Indian economy, the soil and other necessary components have to be properly analyzed before crop cultivation. Soil is a non-renewable natural resource, and its health and land productivity have to be maintained for the sound production system. Though several factors affect the crop yield, the soil is the major factor as all inputs in the production systems can be functionally prosperous only when there is soil/land which is qualitatively suitable for such purpose [1]. Soil classification provides information on the characteristics and location of the different kinds of soils and their potentials as well as their limitation for a different purpose.

The nutrients present in the soil are the most important for plant growth. There are several nutrients present in the soil. Laboratory tests often check for plant nutrients in three categories: Major nutrients: nitrogen (N), phosphorus (P), and potassium (K). Minor nutrients: iron, manganese, copper, zinc, boron, Sulphur and physical properties such as pH, organic carbon and electric conductivity [2]. Though there are several nutrients, the primary macronutrients NPK (Nitrogen, Phosphorous, Potassium) plays a major influential role in determining soil fertility [3]. Based on the amount of NPK present in the soil, crops can be cultivated on a rotation basis to improve the yield [4, 5]. This classification of soil can be effectively carried out with classification algorithms than statistical analysis.

Data mining has gained its importance in all the fields of the research study. A classification is a learning approach that perfectly maps the unambiguous data sample to the predefined class labels. Recently, Machine learning algorithms are widely used for classifying the records of various data types irrespective of fields [6]. Not only automating the process in the field of agriculture will increase productivity but also predicting the soil types for effective yields of crops are also significant [7, 8].

This paper presents the method that effectively classifies the soil datasets using attribute group rank with filter-based instance selection model by grouping the attributes having similar significance and then classifying the samples by filtering the patterns based on the attribute group. The method is specifically applied for Pollachi taluk soil fertility data based on soil atlas of the Coimbatore district provided by the soil survey and land use organization [9].

The paper is organized as follows. Section 2 briefly explains the existing methods and related works pertain to the soil classification. Section 3 presents the detailed working procedure of the overall architecture of the proposed model along with the algorithms. The experimental analysis in section 4 presents the details about the dataset used, illustration with sample test and training records along with the result analysis. Finally, section 5 concludes the proposed research work.

2 RELATED WORKS

Several data mining and machine learning algorithms are highly utilized for the study in the agricultural domain. Specifically, classification algorithms are highly utilized in classifying several factors for increasing crop productivity. Detailed analysis of soil data using various classification algorithms for predicting the soil quality in the field of agriculture has been made by Dildarkhan et al., (2014) [10]. Samundeeswari and Srinivasan evaluated the accuracy of decision tree and C4.5 algorithms in improving the crop yield from the soil dataset collected from the Krishnagiri district of Tamil Nadu.
Tamil Nadu [11]. Similarly, Jayalakshmi and Savitha Devi implemented C5.0, Random forest, and K-Nearest Neighbour as classifiers for predicting soil fertility to increase crop productivity using a data analytic tool [12]. The authors found that the C5.0 classifier yields better results. Soil profile data is also analyzed using naive Bayes classifier types and random forest based on which the author Ramesh and Ramar conclude that the results of classification algorithms are better than the statistical analysis of the soil data [13]. Similarly, the backpropagation network has been utilized for analyzing the soil properties which produces better results using gradient descent algorithm [14].

Not only classification, other data mining techniques such as clustering and classification are also highly employed for agriculture data [15]. To analyze the crop productivity with respect to the soil nutrients and rainfall, the clustering technique is used to cluster the crop based on the suitability of crop against the nature of the soil pertaining to the particular region of Coimbatore [16]. The significance of data mining techniques in the field of agriculture field has been analyzed by implementing association rule mining for different soil types in context to the agriculture domain [17]. Experts systems such as fuzzy logic inference system and other computing techniques are also analyzed with the aim of solving several issues related to the agricultural field [18].

The hybrid classifier has been utilized that consolidates the decision tree classifiers’ property to isolate out dependent attributes, and finally, an effective classification is made by the naive Bayes classifier on independent attributes [19]. However, data mining tools along with agricultural data typically increases productivity by making quality decisions and predictions [20]. Apart from specific methods for agriculture data, several other classification algorithms exist [21] that makes use of ensemble learning [22] and instance-based classifier [23]. Though several classifier models have been employed for classifying the soil data, the methods are not specific as they are not built based on the characteristics of the soil. Thus, there is a need for improving the performance of the classification of soil data by suggesting the model specifically suitable for soil characteristics. The proposed method has been specifically suggested that is suitable for the soil profile data.

3 Attribute Group Rank with Filter Based Instance Selection Model (AGRFIS Model)

The proposed model has been divided into two significant phases such as attribute group rank and filter-based instance selection model for effectively classifying the soil nutrients and its status. The overall framework of the proposed model is presented in Figure 2.

Figure 2. Framework of the Proposed Classification Model

The overall idea of the proposed model is that the attributes are grouped and are ranked based on which the input test samples are classified by matching the patterns of each attribute group in the order of attribute group rank. The instances are filtered at each level of pattern matching by selecting the instances that are having maximum match count and finally the class having a maximum number of instances is predicted as a class label for the test samples. The detailed working procedure of attribute group rank and filter-based instance selection model are presented in the below subsection.

3.1 Attribute Group Rank

The attribute group rank is suitable for many datasets in which some of the attributes will have the same significant level based on the attribute characteristics. For instance, the soil database is of such type. The soil database can have several attribute groups involving physical parameters, macronutrients, and micronutrient parameters. The features such as pH value, organic carbon (OC), electrical conductivity (EC) can be grouped together as they are related to physical parameters with the same significant level. Similarly, the attributes sulfur (S), zinc (Zn), iron (Fe), copper (Cu), Manganese (Mn) and boron (B) having the same significant level are grouped together. Generally, the macronutrients and physical parameters play a vital role in classifying soil fertility than micronutrients. Thus the grouped attributes are ranked with their significance level and based on which the filtering based instance selection model is applied for effective classification of the given data.

In many cases, the dataset may contain numerous attributes and not all of them are substantial for the study. Thus the substantial features can be selected based on the various attribute evaluation methods. Most of the methods compute either rank [24] or score [23] for each attribute and with which the significant attributes are selected. The proposed method evaluates the attribute significance and thereby the ranks are allocated for all the attributes. The ranks are then converted to scores and the attribute group scores are evaluated. Finally based on the attribute group scores, attribute group rank is assigned for all the groups.

In the proposed model, the attribute ranks are evaluated using correlation analysis. The method computes the significance of an attribute by determining the dependency between the attribute and the class using Pearson’s correlation analysis. Though there are several attribute evaluators available in literature such as decision table and relief based algorithms, correlation provides better results among them [24]. However, as the correlation scores always lie between -1 and 1, to scale the scores, the scores are converted to ranks and then to rank scores. Based on the correlation scores, the ranks are assigned to the attributes in such a way that the attribute having a maximum correlation score is assigned a minimum rank and vice versa. Once the ranks are assigned for the attributes, the corresponding score for each attribute is computed by simply inverting the ranks. Thus the formula to compute the scores for the attributes ranks are given in Eq. (1).

$$\text{Attribute Score} = \frac{1}{1+|\text{Rank}|}$$

Here, n is the number of attributes in the dataset. On identifying the scores for the attributes, the attribute group score is computed by averaging the scores of the attributes belonging to the same group. Finally, the attribute group rank for all the groups is identified from the group scores obtained earlier. Utilizing these ranks, each attribute group pattern of the test samples is matched with patterns of the attribute group in the training set for effective classification and the procedure is explained in the next section. The algorithm for the attribute group rank is presented in Figure 3.

![Diagram of Attribute Group Rank with Filter Based Instance Selection Model](image-url)
Input: Set of training data with \(n \) attributes and \(m \) groups
Output: Group \(-\)-Attribute Group Rank

Procedure AttributeGroupRank

Begin
\(n \) = number of attributes
\(m \) = number of attribute group
For \(i = 1 \) to \(n \)
Compute Person’s Correlation for \(i \)-attribute with a class attribute
End For
Sort the attributes based on the correlation score
For \(i = 1 \) to \(n \)
// Assign the ranks based on the attribute correlation score
Attribute_Rank\((i)\) = \(i \);
// Compute the rank score using inversion
Attribute_RS\(\text{core}(i)\) = \(\frac{1}{\text{Attribute_Rank}(i)} \);
End For
// Compute the average of rank score
For \(i = 1 \) to \(m \)
\(\text{Sum_Score} = 0; \ p = 1; \)
While \(\text{p} \neq \text{NULL} \)
\(\text{Sum_Score} = \text{Sum_Score} + \text{Attribute_Score}(p); \)
p++;
End While
Attribute_Group_Score\((i)\) = \(\frac{\text{Sum_Score}}{p} \);
End For
Sort the attributes groups based on the average attribute group score
For \(i = 1 \) to \(m \)
// Assign the ranks for the attribute group based on the score
Attribute_Group_Rank\((i)\) = \(i \);
End For
End Function

Figure 3. Attribute Group Rank Algorithm

3.2 Filter-based Instance Selection Model for Classification

On determining the attribute group rank from the training set using the algorithm presented in Figure 2, the next step is to classify the test samples using the proposed filter based instance selection classifier (FIS Classifier). Based on the rank of the attribute groups, the patterns of the test set are matched with the instances in the training set. The attribute group pattern from the test set involving attribute group having the least rank is matched at the first iteration with the attribute group patterns from the training set and the formula to compute the match count is shown in Eq. (2).

\[\text{MC}(i_p) = \sum_{j=1}^{k} \text{MC}(i_p) \]

where \(\text{MC} \) represents the match count for the instance \(i \) in the dataset \(D \). \(k \) represents the number of attributes in the attribute group. \(\text{count}(a_k) \) takes the value either 1 representing a match and 0 otherwise.

The instances having the maximum match are extracted or filtered out and are processed for the second step and is shown in Eq. (3).

\[i_{\text{test}} \in \text{Class}\left(\text{maximum}\left(\#i_c\right)\right) \quad (4) \]

Here \(i_{\text{test}} \) represents the test instance and \(\#i_c \) represents the instance count of the particular class.

However, in some rare cases, the two classes may have the same maximum instance count. In such situations, the average match count for each class is computed and the class having maximum value is predicted as the class label for the given input test sample. The formula is shown in Eq. (5).

\[i_{\text{test}} \in \text{Class}\left(\text{maximum}\left(\frac{\sum_{i_c} i_{\text{test}}}{\#i_c}\right)\right) \quad (5) \]

Here, \(\#i_c \) represents the number of instances at each class label. Also, if there is no attribute group pattern match at any of the iteration, the specific iteration can be skipped and can be proceeded with the next successive iterations.

The algorithm for the proposed filter-based instance selection model is presented in Figure 4.

Input: Set of training data with \(n \) attributes and \(m \) groups \(D \), Unpredicted Test Sample, Attribute Group Ranks
Output: Predicted Class Label

Procedure FIS_Classifier

Begin
\(n \) = number of attributes
\(m \) = number of attribute group
For \(i = 1 \) to \(m \)
Sort attribute ranks based on Attribute_Group_Rank\((i)\)
End For
// Initially filtered instances contains all the instances of the dataset
Filtered_Instance\((D)\) = Instances\((D)\)
// For each attribute group rank
For \(i = 1 \) to \(m \)
// Fetch Pattern\((i)\) from the attributes corresponding to the attribute group \(i \) of the test sample
Pattern\((i)\) = attribute_values\text{test}(i);
Temp_Instance\((D)\) = Filtered_Instance\((D)\);
While end of the record in Temp_Instance\((D)\)
// Select the instances having maximum match count
\(\text{MC}(i_p) = 0; \)
k is the number of attributes in a particular attribute group
For \(j = 1 \) to \(k \)
If \(\text{attribute_value}_{\text{test}}(i) = \text{attribute_value}_{\text{test}}(j) \)
\(\text{MC}++; \)
End If
End For
End While
// If the match count is 0 then skip the iteration
If \(\text{MC} = 0 \)
// Filter the instance by selecting them having maximum match count
End IF
End For

calculate the number of instances for each class label from the final filtered instances
// Class having the maximum number of instances are predicted as class label for the test sample
\[i_{\text{test}} \in \text{Class}\left(\text{maximum}\left(\#i_c\right)\right); \]
If two or more class labels are predicted
\[i_{\text{test}} \in \text{Class}\left(\text{maximum}\left(\frac{\sum_{i_c} i_{\text{test}}}{\#i_c}\right)\right); \]
End IF
End Function

Figure 4. Filter-based Instance Selection Classifier
Several datasets have the set of attributes that can be grouped under some characteristics with varied significance level. The attribute group rank with filter-based instance selection model produces effective results for such datasets and as the method minimizes its complexity at each iteration by filtering the instances, the method is more suitable for soil datasets.

4. EXPERIMENTAL ANALYSIS
An experimental analysis for the proposed model has been presented in this section. Dataset used for the experimental study, illustration for the proposed model and results analysis are presented in detail.

4.1 Dataset Used
For the proposed study, the soil database at the Pollachi region available at the Department of Agriculture, Cooperation and Farmers Welfare under the Ministry of Agriculture and Farmers Welfare, Government of India [25] has been utilized. The dataset includes 6718 soil data samples with 3452 samples from Pollachi north surrounding with 49 villages and 3266 samples from Pollachi south region surrounding with 29 villages by eliminating the samples having missing values. The database contains 12 attributes such as potential of Hydrogen (pH), organic carbon (OC), electrical conductivity (EC), nitrogen (N), phosphorus (P), potassium (K), sulfur (S), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn) and boron (B) along with the class attribute. The class attribute has 7 classes based on the suitability and fertility of the soil such as very low, low, moderately low, moderate, moderately high, high and very high. The 12 attributes are grouped under four categories such as physical parameter, macronutrients, micronutrients 1, and micronutrients 2. The attribute groups, attribute names and the attribute parameters are presented in Table 1.

<table>
<thead>
<tr>
<th>Attribute Group</th>
<th>Attribute Name</th>
<th>Attribute Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Parameter</td>
<td>Potential of Hydrogen (pH)</td>
<td>AS - Acid Sulphate, SrAc - Slightly acidic, HAc - Highly Acidic, MAC - Moderately Acidic, SIAc - Slightly Alkaline, N - Neutral, SIAl - Slightly Alkaline</td>
</tr>
<tr>
<td>Organic Carbon (OC)</td>
<td>L - Low, VL - Very Low, M - Medium, H - High, VH - Very High</td>
<td></td>
</tr>
<tr>
<td>Electrical Conductivity (EC)</td>
<td>N - Normal, M - Medium, H - High, VH - Extreme</td>
<td></td>
</tr>
<tr>
<td>Macro Nutrients</td>
<td>Nitrogen (N)</td>
<td>L - Low, VL - Very Low, M - Medium, H - High, VH - Very High</td>
</tr>
<tr>
<td>Phosphorus (P)</td>
<td>L - Low, VL - Very Low, M - Medium, H - High, VH - Very High</td>
<td></td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>L - Low, VL - Very Low, M - Medium, H - High, VH - Very High</td>
<td></td>
</tr>
<tr>
<td>Micro Nutrients</td>
<td>Sulfur (S)</td>
<td>D - Deficient, S - Sufficient</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>D - Deficient, S - Sufficient</td>
<td></td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>D - Deficient, S - Sufficient</td>
<td></td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>D - Deficient, S - Sufficient</td>
<td></td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>D - Deficient, S - Sufficient</td>
<td></td>
</tr>
<tr>
<td>Boron (B)</td>
<td>D - Deficient, S - Sufficient</td>
<td></td>
</tr>
</tbody>
</table>

4.2 Illustration
For an illustration of the proposed model, the soil database at Pollachi north region available at the Department of Agriculture, Cooperation and Farmers Welfare under the Ministry of Agriculture and Farmers Welfare, Government of India [25] has been utilized. The sample database is shown in Table 2.

<table>
<thead>
<tr>
<th>S.N o</th>
<th>pH</th>
<th>E C</th>
<th>O C</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>S</th>
<th>Z n</th>
<th>F e</th>
<th>C u</th>
<th>M n</th>
<th>B</th>
<th>Cla ss</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MA I</td>
<td>V</td>
<td>L</td>
<td>L</td>
<td>V</td>
<td>H</td>
<td>D</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>D</td>
<td>D</td>
<td>VL</td>
</tr>
<tr>
<td>2</td>
<td>MA I</td>
<td>N</td>
<td>H</td>
<td>L</td>
<td>V</td>
<td>L</td>
<td>H</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>S</td>
<td>D</td>
<td>M</td>
</tr>
<tr>
<td>3</td>
<td>SI Ac</td>
<td>N</td>
<td>M</td>
<td>L</td>
<td>V</td>
<td>L</td>
<td>H</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>ML</td>
</tr>
<tr>
<td>4</td>
<td>MA I</td>
<td>N</td>
<td>H</td>
<td>L</td>
<td>V</td>
<td>L</td>
<td>H</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>MH</td>
</tr>
<tr>
<td>5</td>
<td>MA I</td>
<td>N</td>
<td>H</td>
<td>L</td>
<td>V</td>
<td>L</td>
<td>H</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>D</td>
<td>D</td>
<td>L</td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td>N</td>
<td>L</td>
<td>L</td>
<td>V</td>
<td>H</td>
<td>M</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>ML</td>
</tr>
<tr>
<td>7</td>
<td>MA I</td>
<td>N</td>
<td>H</td>
<td>L</td>
<td>V</td>
<td>L</td>
<td>H</td>
<td>D</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>MH</td>
</tr>
<tr>
<td>8</td>
<td>MA I</td>
<td>N</td>
<td>M</td>
<td>L</td>
<td>V</td>
<td>L</td>
<td>H</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>D</td>
</tr>
<tr>
<td>9</td>
<td>MA I</td>
<td>N</td>
<td>V</td>
<td>L</td>
<td>L</td>
<td>V</td>
<td>H</td>
<td>D</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>D</td>
<td>M</td>
</tr>
<tr>
<td>10</td>
<td>MA I</td>
<td>V</td>
<td>L</td>
<td>L</td>
<td>V</td>
<td>H</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>S</td>
<td>D</td>
<td>D</td>
<td>ML</td>
</tr>
<tr>
<td>11</td>
<td>MA I</td>
<td>H</td>
<td>V</td>
<td>L</td>
<td>L</td>
<td>V</td>
<td>H</td>
<td>D</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>D</td>
<td>ML</td>
</tr>
<tr>
<td>12</td>
<td>SI Ac</td>
<td>N</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>V</td>
<td>H</td>
<td>S</td>
<td>D</td>
<td>S</td>
<td>S</td>
<td>D</td>
<td>L</td>
</tr>
</tbody>
</table>

As the first phase, the attribute group rank must be computed using the Pearson correlation coefficient as a base. The dependency between each attribute and the class attribute is computed and is denoted as a correlation score. Based on the scores, the ranks are assigned. The ranks are then converted to ranks scores. The ranks scores are averaged to compute the attribute group score and with which the attribute group ranks are assigned for further classification. The values obtained on computing attribute group rank are presented in Table 3.

<table>
<thead>
<tr>
<th>Attribute Group</th>
<th>Attribute Name</th>
<th>Attribute Correlation Score</th>
<th>Attribute Rank Score</th>
<th>Attribute Group Score</th>
<th>Attribute Group Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Parameter</td>
<td>pH</td>
<td>0.497</td>
<td>2</td>
<td>0.5000</td>
<td>0.2315</td>
</tr>
<tr>
<td>OC</td>
<td>0.069</td>
<td>9</td>
<td>0.1111</td>
<td>0.5000</td>
<td>1</td>
</tr>
<tr>
<td>EC</td>
<td>0.045</td>
<td>12</td>
<td>0.0833</td>
<td>0.5000</td>
<td>1</td>
</tr>
<tr>
<td>Nitrogen (N)</td>
<td>N</td>
<td>0.397</td>
<td>6</td>
<td>0.1667</td>
<td>0.1476</td>
</tr>
<tr>
<td>M</td>
<td>0.620</td>
<td>1</td>
<td>1.0000</td>
<td>0.1553</td>
<td>3</td>
</tr>
<tr>
<td>H</td>
<td>0.472</td>
<td>3</td>
<td>0.3333</td>
<td>0.1553</td>
<td>3</td>
</tr>
<tr>
<td>V</td>
<td>0.304</td>
<td>7</td>
<td>0.1429</td>
<td>0.1553</td>
<td>3</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>0.065</td>
<td>10</td>
<td>0.1000</td>
<td>0.1553</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>Fe</td>
<td>0.399</td>
<td>5</td>
<td>0.2000</td>
<td>0.1553</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>0.065</td>
<td>11</td>
<td>0.0909</td>
<td>0.1553</td>
<td>3</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>0.456</td>
<td>4</td>
<td>0.2500</td>
<td>0.1553</td>
<td>3</td>
</tr>
<tr>
<td>Boron (B)</td>
<td>0.167</td>
<td>8</td>
<td>0.1250</td>
<td>0.1553</td>
<td>3</td>
</tr>
</tbody>
</table>

The next phase is the classifier phase in which the test samples are classified using filter-based instance selection. This phase has n iterations where n is the number of attribute groups. The test samples to be classified as shown in Table 4.

Table 2. Sample Soil Database

Table 3. Attribute Group Rank Computation

Table 4. Attribute Group Rank Computation
In iteration 1, the pattern (L, L, VH) corresponding to the macronutrients group having rank 1 from the test sample 1, is compared with the macronutrients group of the training samples. On comparison, the instances with sample numbers such as <1, 9, 10, 12> having the match are filtered and are selected for the next step. During iteration 2, on comparing the pattern (SIAc, N, VL) corresponding to physical parameters group having rank 2 of the test sample 1, is compared with that of the training samples and the instances with sample numbers such as <9, 12> having the maximum match as (SIAc, N) and (N, VL) are filtered and selected for the next step. With iteration 3, the instance with sample numbers such as <9, 12> having the match is filtered out on comparing the pattern (S, S, D) corresponding to micro nutrients2 group having rank 3 of the test sample 1 with the training samples. Finally, the iteration 4 provides the instance with sample number <12> as a final output by comparing the pattern (S, S, D) of the test sample and the training samples corresponding to the micronutrients 1 group with rank 4. Thus, as the final instance corresponds to class L (low), L is predicted as a class label for the test sample 1. Similarly, on evaluating the iterations using the proposed filter based instance selection classifier, it is predicted that the test sample 2 corresponds to the class label MH (moderately high).

4.3 Results and Discussion

The analysis has been made for the proposed attribute group rank with a filter based instance selection model (AGRFIS) for effective classification of soil dataset of the Polliachi region. The proposed model is compared with existing classifiers such as Naïve Bayes (NB), Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Logistic Boost (LB), AdaBoost (AB), Bagging (BAG), Decision Table (DT), RIPPER (JRip), Zero R Classifier (ZeroR), Random Forest (RF), Random Forest with Multiple Weight Based Majority Voting (RF-MWVM) [22], Average Weighted Pattern Score (AWPS) [23]. The number of instances that are correctly classified and incorrectly classified, accuracy and false rate for the existing and proposed models are presented in Table 6.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Correctly Classified Instances</th>
<th>Incorrectly Classified Instances</th>
<th>Accuracy in %</th>
<th>False Rate in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>4450</td>
<td>2268</td>
<td>66.240</td>
<td>33.760</td>
</tr>
<tr>
<td>LR</td>
<td>6285</td>
<td>433</td>
<td>93.555</td>
<td>6.445</td>
</tr>
<tr>
<td>SVM</td>
<td>6145</td>
<td>573</td>
<td>91.471</td>
<td>8.529</td>
</tr>
<tr>
<td>KNN</td>
<td>6089</td>
<td>629</td>
<td>90.637</td>
<td>9.363</td>
</tr>
<tr>
<td>LB</td>
<td>4963</td>
<td>1755</td>
<td>73.876</td>
<td>26.124</td>
</tr>
<tr>
<td>AB</td>
<td>3172</td>
<td>3546</td>
<td>47.216</td>
<td>52.784</td>
</tr>
<tr>
<td>BAG</td>
<td>6096</td>
<td>622</td>
<td>90.741</td>
<td>9.259</td>
</tr>
<tr>
<td>DT</td>
<td>6121</td>
<td>597</td>
<td>91.113</td>
<td>8.887</td>
</tr>
<tr>
<td>JRip</td>
<td>6179</td>
<td>539</td>
<td>91.977</td>
<td>8.023</td>
</tr>
<tr>
<td>ZeroR</td>
<td>3248</td>
<td>3470</td>
<td>48.348</td>
<td>51.652</td>
</tr>
<tr>
<td>RF</td>
<td>3387</td>
<td>3331</td>
<td>50.417</td>
<td>49.583</td>
</tr>
<tr>
<td>RF-MWVM</td>
<td>6291</td>
<td>427</td>
<td>93.844</td>
<td>6.356</td>
</tr>
<tr>
<td>AWPS</td>
<td>6317</td>
<td>401</td>
<td>94.031</td>
<td>5.969</td>
</tr>
<tr>
<td>AGRFIS</td>
<td>6328</td>
<td>390</td>
<td>94.195</td>
<td>5.805</td>
</tr>
</tbody>
</table>

The accuracy rate and the false rate is shown as a graph in Figure 5 for better interpretation than values shown in Table 6. From the result analysis the proposed model provides a better accuracy rate of 94%. The other existing methods such as AWPS, RF-MWVM, LR, SVM, JRip and DT are producing similar results concerning accuracy values such as 94%, 93.6%, 93.5%, 91.5%, 91.9%, and 91% respectively.
From the experimental analysis, out of 6718 soil samples in Pollachi region, 2389 samples are classified as moderately low category, 1903 samples correspond to moderate category, 843 samples are classified as low, 828 samples correspond to very low category, 490 samples correspond to moderately high nutrient soil, 142 samples and 123 samples corresponds to high and very high categories respectively. The classified soil types for the Pollachi region is shown in Figure 6.

On average, 36% of the soil in the region has many micro and macronutrient deficiency with moderately alkaline type and thus corresponds to a moderately low category. 28% of the soil type belongs to the moderate category as the soil has major micronutrient and minor micronutrient deficiency. 25% of the soil has macronutrients, micronutrients, and organic carbon deficiency and thus they are classified as a low and very low category. 11% of the soil samples belong to moderately high, high and very high types with minimum or no nutrient deficiency. Thus, productivity can be increased by choosing appropriate crops suitable for the moderate and moderately low soil categories or the nutrients in the soil can be increased by consuming appropriate fertilizers.

5. CONCLUSION

Soil is the most significant part of the agriculture field. Classifying the soil based on the nutrients present in the soil such as nitrogen, potassium, phosphorus, sulphur, zinc, iron, copper, manganese and boron along with its physical properties such as pH value, organic carbon and electric conductivity of soil, highly helpful for increasing the agriculture productivity. This paper introduces a novel classifier for soil data that makes use of attribute group rank with filter based instance selection. Attribute group rank aids us to identify the significant attribute group for classifying the soil data by selecting the instances. From the experimental analysis, it is shown that the proposed model has better classification accuracy than many other existing classifiers under study. The proposed model has 91.2% accuracy, 94.4% precision and 94.3% recall in classifying the soil data of the Pollachi region. The future work concentrates on analyzing the soil types for the other regions in and around Coimbatore. Also, in the future, predicting the crops for the particular soil type along with the weather and climatic conditions has to be carried out which is significantly required for increasing agriculture productivity.

REFERENCES

