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Reservoir Management Decisions Utilizing 
Markov Decision Processes 
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Abstract: Dam and reservoir managers have a responsibility to find a balance of managing water levels while maximizing power outputs. If the water is 
too high, they risk damaging the generators. However, if it is too low, they will not be able to meet electrical and water requirements. In this paper, a 
Markov chain decision process is presented to determine the best management policy of a reservoir, which minimizes the opportunity cost of changing 
water levels with respect to power generation potential. The presented Markov decision model can determine the optimal release decisions based upon 
the defined states of a reservoir. It is concluded that managers should decide to release the maximum at all water level states, except when water level 
is at the medium state, the manager can choose either a minimum or maximum release. 
 
Index Terms: Reservoir management, Markov chain, Markov decision process, Linear program, storage level, outflow quantity, risk management.   
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1 INTRODUCTION                                                                     

Dams and reservoirs are a means for large metropolitan and 
rural areas to create energy output, store water surpluses, 
provide irrigation and drinking water. Dams can prevent 
flooding during seasons of high rainfall or mountainous snow 
thaw. Reservoir operations are usually controlled by means of 
deliberate decisions concerning the release volume during a 
specific period of time. Reservoir managers and operators 
often rely on rule curves based on historical data and their own 
judgement and experience in making reservoir release 
decisions. Many reservoir systems are still managed based on 
fixed predefined rules. These rules must satisfy various 
constraints on the system to minimize overflow and/or 
maximize energy production while meeting water storage 
volume targets. A policy optimization is not required to operate 
reservoirs, but managers use optimization for planning and in 
practice [1]. As reservoirs become larger and integrate into 
systems involving multiple reservoirs, the need increases to 
optimize planning operations [2]. Using optimization 
techniques to assist in reservoir management can provide 
significant monetary benefits. The costs and operating 
expenses of many of these reservoirs are large enough that 
small enhancements in the system can save considerable 
amounts of money and resources. Operating rules obtained by 
simulations and Markov Decision Process (MDP) models have 
historically been used for the planning and operations of 
reservoir systems. When MDP solutions are compared to 
traditional rule curve solutions, Markov solutions have 
provided similar reliability with rule curve solutions with 
increased profits [1]. During the last several decades, lots of 
researches have been done describing optimization models 
and approaches for reservoir operation, but a consistent 
conclusive solution has yet to be found. A single method for 
solving reservoir operation problems has not been decided, 
however many studies attempt to optimize these decisions 
using stochastic dynamic programming and MDP [3, 4].  
 
 
 
 
 
 
 
 
 
 

These methods are preferred because reservoir management 
decisions are periodic and sequential. Reservoir operations 
are an industrial application that can be viewed as a MDP. A 
MDP can be applied to represent and potentially optimize a set 
of policy decisions to maximize, or minimize, a set of desired 
outcomes. MDP models can be utilized by reservoir managers 
for the long-term planning to obtain optimal policies for 
monthly release and storage targets. In this short paper, we 
present a simple yet practical optimization approach, which 
employs a concept of MDP, to determine the release criteria of 
reservoirs, which are a function of the system state variables; 
the beginning period storage level and decision of outflow 
quantity. Due to the number of variables and states within 
multi-reservoir functions this paper will consider the planning 
cycle of a single reservoir over a one-year period. The storage 
and inflow variables will be simplified by discretizing the 
storage volume and the water inflow quantities by using the 
probability of transition states from one time period to the next 
between a finite number of states. Ideally, our model could be 
applied to other reservoirs using similar characteristics. The 
optimization of this operation will be determining a set of 
optimal release decisions for the successive time periods so 
that long-term operations are maximized.  

 
2 PROBLEM STATEMENT 
The problem formulated in this study is, in a given year 
what is the optimal policy mix of water release amounts, 
given a current water level state, to maximize the potential 
power output of the dam? To develop this problem 
formulation we researched several aspects of dam and 
reservoir operations. Lots of previous studies have 
explored optimizing reservoir and dam operations through 
a Markov decision models. There are several ways the 
team could approach the assumptions, variables and states 
to develop a model capable of providing a viable policy 
solution. In the optimization of this reservoir operation, the 
release decisions are determined at the beginning of the 
month with the current reservoir water level and transition 
probability given that particular state. The current water 
level of the reservoir and the forecast of water intake are 
estimated in different ways depending on the study. 
Several studies employed a monthly or seasonal flow 
forecast of the current state water level variables. Water 
inflows into reservoirs are highly variable, but it can be 
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modeled using a Markovian stochastic process. To simplify 
the model formulation, a stochastic variable was not used. 
We replaced an inflow variable with the transition 
probabilities of moving from one state to another based on 
historical water level data. That accounted for both inflow 
and outflow quantities, as well as secondary factors such 
as evaporation.In reservoir operations, it is necessary to 
hold enough water for operations, to produce hydroelectric 
energy or provide support to other dams when needed. 
However, too much water held up by a dam could cause a 
collapse or overflow which could lead to significant 
infrastructure and environmental damage. Stochastic 
optimization was the means for our team to reach an 
optimal policy, and so states and decisions had to be 
defined. The states of our system are correlated to the 
water level. It is similar to an inventory problem in that we 
used the volume of water to be our basis for the decisions. 
The operations support team must decide, based on the 
current water level, how much water to release to minimize 
the opportunity cost of power generation. We define 
opportunity cost as the difference between the maximum 
potential of value and the current state value. In other 
words, any state, or decision, that results in less power 
being created comes at a cost of lost revenue that would 
have been earned if the dam were operating at full 
capacity. These levels are: Minimum Release, 50% 
Release, and Maximum Release.In order to develop the 
Markov decision model the team made several 
assumptions due to the number of variables. The team 
investigated the stochastic nature of inflows based on 
historical data and identified the requirement to simplify the 
water level states and release decisions. It is concluded 
that a deterministic model would be the best approach 
given our resources and limited experience with dam and 
reservoir operations. Given additional time and resources, 
the team could create more specific states and water 
release decision amounts and incorporate variable 
increases in inflow and outflow rates to create a more 
accurate model. In this problem, many variables were 
considered but not quantified in our model. We did not 
have the opportunity to research into every impacting 
factor. Although we did look at water levels, we did not go 
into great detail on how sediment can impact reservoirs. 
Streams and rivers which flow into reservoirs can carry 
sediment which can impact water level measurements. 
Additionally, climate change could greatly impact dams 
through increased or decreased precipitation levels and 
surface temperature increases [5]. Evaporation is also a 
significant factor on reservoir water levels and is very 
difficult to quantify and predict.The goal of our Markov 
decision model is to represent the basic mechanics of a 
reservoir. The presented model provides an optimal policy 
to minimize operational cost. The solution to the problem 
required the decision policies, which kept operational costs 
to a minimum. 

 
3 MARKOV DECISION MODEL FORMULATION 
The data used in this study is from the Lake Powell water 
database, which includes extensive measurements dating 
back from 1963 [6]. This data includes daily contents of Lake 

Powell, water elevation levels, water inflow and outflow 
measurements as well as water temperatures. Note that Lake 
Powell reservoir is used for recreation, energy creation and 
delivering water to California, Arizona, and New Mexico via the 
Glen Canyon Dam [7]. The year of 2018 is used as the 
baseline to establish the proposed model and extrapolate the 
decision process for any given year. However, the model can 
be modified by taking the averages and inputs from any other 
year. There are several assumptions needed to make in order 
to establish this baseline dataset. The first assumption took 
the average monthly water level variation to establish each 
water level state. The water content on the first of the month 
was used as the water content level for that month (m). Refer 
to Table 1 for detailed information, where all of these 
measurements were in acre feet squared (afs). By taking the 
difference between the highest monthly water level (m

max
) and 

the lowest monthly water level (m
min

), the yearly variation in 
water levels (b) are calculated and then divided it by 12 to 
establish a monthly water level variation (u). In order to 
determine the probability of transition from one state to 

another, the changes (∆m) from the current month water 
content (mt) from the previous month water content (mt-1) 
was measured. It is established that if t>u then the state 
changed from a higher state to lower state. If -∆m <-u the 
state changed from a lower state to higher state. 
 Otherwise, the state remained unchanged because this 
difference (∆m) did not exceed the average monthly water 
content variation (u) of 296,426 (afs). The water content 
from 01 January 2018 (mt-1) was 14,055,756 (afs) on 01 
February 2018 (mt) the water content level was 13,662,840 
(afs) this is a difference (∆m) of 392,916 (afs). Because ∆m 
exceeded the average monthly variation (u) of 296,426 
(afs), in our model, the state changed from a higher state to 
a lower state. We did this for all 12 months of 2018 to 
establish the probability of the states changing on any 
given month (see Table 1). 

 

TABLE 1 
WATER CONTENT VARIATION (2018) 

 
Date of 

Measurement 
Water Content 

(Afs) 
Changes from 

previous month (Afs) 
Change in 

state? 

1-Dec-17 14,322,262 n/a n/a 
1-Jan-18 14,055,756 266,506 No 
1-Feb-18 13,662,840 392,916 Yes 
1-Mar-18 13,335,432 327,408 Yes 
1-Apr-18 12,948,951 386,481 Yes 
1-May-18 12,658,966 289,985 No 
1-Jun-18 12,899,134 (240,168) Yes 
1-Jul-18 12,711,184 187,950 No 
1-Aug-18 12,095,911 615,273 Yes 
1-Sep-18 11,458,588 637,323 Yes 
1-Oct-18 11,016,261 442,327 Yes 
1-Nov-18 10,860,384 155,877 No 
1-Dec-18 10,498,645 361,739 Yes 

 
After these calculations, it is determined that seven months out 
of the year the state would change from a high-level state to a 
lower level state (0.58). Four months out of the year the state 
would remain the same from one month to the next (0.34). 
One month out of the year the state would increase from a 
lower state to a higher state (0.08). The month of June did not 
have a -∆m <-u but because it was the highest water content 
level increased closest to -u, the team included it as a 
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possibility of the state increasing to a higher state from one 
month to the next. At no point in the year did the state increase 
or decrease more than one state above or below its current 
state. To simplify the model into four states, we took each 
three-month period as one state, i.e., State 0 being the lowest 
state, State 1 being a medium level, State 2 being a high level 
and State 3 being an overflow state.  

 

0 .9 2 0 .0 8 0 0

0 .5 8 0 .3 3 0 .0 8 0

0 0 .5 8 0 .3 3 0 .0 8

0 0 0 .5 8 0 .4 2

i j
P

 

 

 
 

 
 

 (1) 

 

To account for the changes to the states based on our 

decisions, the team needed to vary the probabilities of 

transition based on those decisions. We established current 

state = C higher state = H and lower state = L. The baseline 

probabilities to transition to a higher state is 0.08, the 

probability to transition to a lower state is 0.58, and the 

probability to remain in the same state is 0.34. These transition 

probabilities were used for the decision to half release. It is 

assumed the water level will not exceed state 3 (Overflow) or 

go below State 0 (Low). If the current state is state 3, the H 

would be added to C, and L = 1 - (H+C). If the current state is 

in State 0, L would be added to C, and H = 1 - (L+C). This 

assumption is acceptable because these are the inflows 

observed for the entire year assuming a variable inflow and a 

half release will not necessarily increase or decrease the 

probability to transition between states. 
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i j
P
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 
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 
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 (2) 

 

The baseline probabilities H (0.08), L (0.58) and C (0.34) were 
adjusted for the minimum release decision. With a minimum 
release decision, the probability to increase state became 2H 
=0.16. The probability to remain the same became 2C=0.68 
and the probability to move to a lower state became L = 1-
(2H+2C)=0.16. If the current state is 3, the 2H would be added 
to 2C, and L = 1- (2H+2C). If the current state is 0, 2L would 
be added to 2C, and H=1– (2L+2C). Again, this assumption is 
acceptable because releasing less water implies that the water 
level may increase and be more likely to transition to a higher 
state assuming a variable inflow.  

 

0 .9 6 0 .0 4 0 0

0 .7 9 0 .1 7 0 .0 4 0

0 0 .7 9 0 .1 7 0 .0 4

0 0 0 .7 9 0 .2 1

i j
P
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 

 
 

 (3) 

 
The baseline probabilities H (0.08), L (0.58) and C (0.34) were 
adjusted for the full release decision. With a full release 
decision, the probability to increase state became ½H =0.04, 
the probability to remain the same became ½C = 0.17 and the 
probability to move to a lower state became L = 1-(½H+½C) = 
0.79. It is again assumed the water level will not exceed State 

3 (Overflow) or go below State 0 (Low). Therefore, if the 
current state is 3, the ½H would be added to ½C, and L = 1 - 
(½H+½C), while if the current state is 0, ½L would be added to 
½C, and H = 1 - (½L+½C). This assumption is acceptable 
because if more water is released, the water level is less likely 
to increase assuming a variable inflow. The water inflow and 
outflow is measured in cubic feet per second (cfs). The 2018 
inflow and outflow rates were used to measure month-to-
month variations. Additional factors besides inflow and outflow 
affect the total water content of the reservoir, to include 
evaporation. To simplify the model, it is decided to use the 
previous state as the starting input not an inflow variable. 
Outflow decision rates were based on the outflow rates 
grouped into three decision policies: minimum release, half 
release, and full release. Each of these decisions would affect 
the probabilities of moving from one state to another given the 
current state (see Figure 5). Note that the amounts of water 
(cfs) did not factor into the probabilities of transition.  

 

 
Fig. 1.  Markov chain for the Reservoir  

 

TABLE 2 

COST ESTIMATION OF EACH STATE AND DECISION 

 

State/ 
Decision 

Modifying 
Coefficient 
(yfq) 

Power 
generated 
per Month 
(MW) 

Total Value 
of power 
generated 
($) 

Opportunity 
Cost ($) 
G =max V -V 

Low/Min ⅓(⅓q) 12.21   84,249 674,751 
Low /Half ½(⅓q)  18.31 126,339 632,661 
Low/Full ⅓q 36.63 252,747 506,253 
Medium/Min  ⅓(½q) 18.33 126,477 632,523 
Medium/Half ½(½q) 27.5 189,750 569,250 
Medium/Full ½q 55 379,500 379,500 
High/Min ⅓q 36.63 252,747 506,253 
High/Half ½q  55 379,500 379,500 
High/Full q 110 759,000 0 
Overflow 0 0 0 759,000  

 
Next, we present a linear model to determine the optimal 
decision policy given the aforementioned states and 
probabilities. The linear program is based on a transition 
matrix that showed the transition probability of moving from 
state (i) to state (j) given a decision (k). The cost of each 
decision is given a water level state (see Table 2) Note that the 
value of 1MW per month is assumed to be $6,900 USD. 
Hence, the linear programming model is to choose the yik so 
as to   
 

Maximize 
 

ik ik

i M k K

c y

 

    (4) 

 
This objective function is subject to the following constraints: 
 

 

1
ik

i M k K

y

 

   ,  (5) 
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ik ik i j
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     , j M   (6) 

 

0
ik

y   , ,i M k K    (7) 

 

Readers are refer to [8] for detailed information of this linear 
programming model formulation. 
   

4 RESULTS AND DISCUSSION 
The results indicate that managers should decide to release 
the maximum at all water level states, except when water level 
is at the medium state, the manager can choose either a 
minimum or maximum release. The expected monthly cost of 
$0.49M, and an expected yearly cost of $5.89M. These costs 
are only to the opportunity costs of power generation attributed 
to the water level states and the decision variables.  We used 
discrete time Markov Chains to evaluate and determine the 
optimal solution to the operation of a water reservoir. The 
results appear to be consistent with a real-world application. 
The linear program shows, that to minimize cost, the decision 
maker should always try to maximize output at each state. 
Interestingly, if the water is at a low state, it would cost more to 
reduce the flow and get to a higher (more lucrative) state than 
it would be to stay in a low state and maximize the outflow. 
This is primarily due to the inflow state probabilities of the 
Colorado River. Further, this gives insight to the location of 
future dams, power generation capacity requirements, and 
risks of floods and droughts.This optimization method may not 
be applicable to other reservoirs due to the availability of data 
and/or the length of time data was collected. The water level 
and inflows for Lake Powell have been documented for over 
55 years [9] enabling us to make assumptions to simplify and 
optimize reservoir operations. Furthermore, the decisions 
would change based on inflow rates and the probability to 
change states. In our model, there are very few high inflow 
months and many low inflow months. We acknowledge that 
there are many other variables that would add to the cost of 
operating a reservoir. 
 

5 CONCLUSION 
In this study, our goal was to demonstrate the applicability of 
Markov Chain processes to reservoir operations. Through our 
research and application we demonstrated that Markov Chains 
be used to improve to reservoir operations. We conclude that, 
with creative and critical thinking, there are many different 
ways to apply these processes to account for a myriad of 
variables that can affect reservoir costs, water levels, and 
decisions. Optimizing operations with variables that are at the 
mercy of the environment requires a significant amount of data 
so analysts can draw conclusions and make assumptions 
based on historical data. The challenge is determining how 
much data is needed to accurately extrapolate future 
predictions.  Further research would include more detail in a 
cost/benefit analysis to include hydroelectric power, supporting 
drinking water to locals and other areas, possible impact for 
recreational activities, and any irrigation necessities. Although 
we held sediment levels constant, any reservoir would likely 
benefit from some further research into how sediment from the 
rivers and streams nearby might affect overall volume and 
inflow month by month or year after year. Additionally, climate 
changes continuously occur which might have further reaching 

impact. Climate changes would include precipitation and at 
some reservoirs how the water temperatures might affect 
release decisions. Finally, in relation to climate change, 
operations with excessive amounts of water including flash 
floods are worth further research [6].This research discussed 
refining the Markov Chain Decision model and created states. 
With enough time and money, a more detailed Markov process 
could be developed to account for the variables we were 
unable to quantify. Accounting for inflow with a stochastic 
variable based on the historical data will provide greater 
accuracy in predicting inflow probabilities and changes to 
states. Accounting for outflow quantities to include variables 
like evaporation will assist in more specific quantities of 
outflow decisions. 
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