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Moyal Lax Integrability Of Standard And Pseudo 
Hierarchy Equations 

 
A. EL Boukili, M. Nach, M. B. Sedra 

 

Abstract: In This paper we will study Non commutative sln-KdV hierarchy equations by the means of Moyal Non commutative Lax generating technics. 
We will make some consistent assumptions shown to be essential in deriving the Lax pair of special noncommutative integrables systems, for this we 
calculate positive and negative orders of Moyal Noncommutative hierarchy equations for Burgers and KdV systems . We present also the conditions of 

having linear equations and giving the ansatz Process and the NC hierarchy equations in the general case. 
 
Index Terms: Moyal noncommutativity, integrability, Lax equations, Burgers equation, KdV equations   

———————————————————— 

 

1. INTRODUCTION 
More recently there has been a growth in the interest in non-
commutative geometry (NCG), which appears in string theory 
in several ways [1]. Much attention has been paid also to field 
theories on NC spaces and more specifically Moyal deformed 
space-time, because of the appearance of such theories as 
certain limits of string, D-brane and M-theory [2],[3]. Non-
commutative field theories emerging from string (membrane) 
theory stimulate actually a lot of important questions about the 
non-commutative integrables systems and how they can be 
described in terms of star product and Moyal bracket [4],[5]. 
Recall that in the Moyal momentum algebra the ordinary 
pseudo differential Lax operators [6] and [7] 
 

L n 
jZ

unj
j,   #   

 

(1) 

 
is naturally replaced by the Moyal momentum Lax operators 

 

L n 
jZ

unj pj,   #   

 

(2) 

 
This work is presented as follows: We give in section 2 our 
convention notations with a recall of the basic lines of the 
Moyal momentum algebra. Section 3 is devoted to a set up of 
the Lax pair representation in higher order of special integrable 
systems namely the KdV and Burgers modeles. In section 4 
we gives the (Non standard) pseudo formulation of the Lax 
generating technics applied to Burgers systems. section 5 is 
for conclusion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. ON THE MOYAL MEMENTUM ALGEBRA 
 

2.1 Algebric Structure 
This is the algebra based on arbitrary momentum differential 
operators of arbitrary conformal weight m and arbitrary 
degrees (r,s). Its obtained by summing over all the allowed 
values of spin (conformal weight) and degrees in the following 
way[6]-[10] 
 



rs mZ



m

r,s
  #   
 

(3) 

 

with 



m

r,s

 is the space of momentum differential operators of 

conformal weight m and degrees (r,s) with sr  . Typical 

operators of this space are given by 
 

L m
r,s
u

ir

s

umixpi   #   

 

(4) 

 

Noting 



m

k,k

 the unidimensional subspaces containing 

prototype elements of kind 
k

km pu *  or km

k up * . Using 

the   -Leibniz rule, we can write, for fixed value of k: 

 



m

k,k
m

k,k
 m

k1,k1
 

2
m
k2,k2

. . .   #   
 

(5) 

 

where m
k,k

 is the standard one dimensional sub-space of 

Laurent series objects 
k

km pu   considered also as the 

)0(  -limit of 



m

k,k

. 

 

We can extract from the space 



m

r,s

 the subalgebra 



0

,1

 
which have the remarkable space decomposition 
 



0

,1




0

,1




0

0,1
,   #   

 

(6) 

 

where 



0

,1

 describes the Lie algebra of pure non local 
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momentum operators and 



0

0,1

 is the Lie algebra of local 

Lorentz scalar momentum operators 010 *)( upuuL    . 

The latter can splits as follows 
 



0

0,1




0

0,0




0

1,1
,   #   

 

(7) 

 

where 



0

1,1

 is the Lie algebra of vector momentum fields 

puuJ *)( 10   which are also elements of 
0

0,1

. 

Forgetting about the fields (of vanishing conformal spin) 

belonging to 
0

0,0

 is equivalent to consider the coset space 
 



0

1,1




0

0,1
/0

0,0
  #   
 

(8) 

 
one obtain the Diff(S

1
) momentum algebra of vector fields 

puuJ *)( 10   namely 

 

J0u,J0v J0w  #   
 

(9) 

 

with 11111 







  vuvuw . 

 
The extension of these results to non local momentum 
operators is natural. In fact, one easily show that the previous 
Lie algebras are simply sub-algebras of the huge momentum 

space 



0

,1

. For a given 10  k , we have 

 



0

0,1




0

,k




0

,1
  #   
 

(10) 

 
and by virtue of (4) 

 




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,

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0,1



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,k




0

,1
  #   
 

(11) 

 

and for 1 qp  

 





0

,p
,


0

,q




0

,pq1
  #   
 

(12) 

 
These Moyal bracket expressions show in turn that all the 

subspaces 


0

p,q

 with 1 qp  are ideals of 



0

,1

. 

 

2.2 Moyal Bracket 
The Moyal bracket may be thought of as a deformation of the 
Poisson bracket by the introduction of higher order derivative 
terms. It turns out that the Jacobi identity is highly restrictive 
as to the nature of these terms, and one is lead uniquely to the 
Moyal bracket: 
 

f,g 
s0




2s

2s1!

j0

2s1

1j 2s1
j

x
j
p

2s1j
fx

2s1j
p

j
g.   #   

 

(13) 

It has all the standard properties one would expect of such a 
bracket: 
 

f,g f,g, : antisymmetry ,

afbg,h af,hbg,h, : linearity ,

f,g,hg,h, fh,f,g 0 : Jacobi identity

  #   

 

(14) 

 
(where a,b are independent of x and p). Moreover it has the 
important property that 

 

lim
0
f,g f,g,   #   

 

(15) 

 

where the bracket  f,g  is just the Poisson bracket 
 

f,g
f

p

g

x

g

p

f

x
  #   

 

(16) 

 
In the limit as 0  the bracket collapses to the Poisson 

bracket (14). It also has many other interesting properties, 
amongst which is the fact that it may be written in terms of an 
associative  *-product defined by 
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
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This has the property that ,*lim
0

fggf 


and with this the 

Moyal bracket takes the form: 
 

f,g 
fggf
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
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
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(18) 

 

where ff s

x

s )(
 is the prime derivative, 

)!(!
!
sns

ns

nC
p

n










  

and ij  is a constant antisymmetric tensor. This definition of 

the star operator may be extended to a 2N dimensional phase 

space with canonically conjugate variables  
x j,pj as follows 
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2.3 Moyal Lax Formulation 

The algebra sln 


n

0,n
 describes simply the coset 
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space 



n

0,n
/


n

n1,n1

 of nsl -Lax operators given by 

 

L nupn


i0

n2

uni pi   #   

 

(20) 

  

where we have set 10 u  and 01 u . This is a natural 

generalization of the well known 2sl -momentum Lax operator 

 

L 2 p2
u2   #   

 
(21) 

 

associated to the  -KdV integrable hierarchy that we will 

discuss later. Such operator can be writen as 
 

L 2 p

p  #   

 

(22) 

 

where   is a Lorentz scalar field. 

 

The first nontrivial  -deformed Toda field theory is the one 

associated to the 3sl  momentum Lax operator 

 

L 3  p3
u2pw3 ,   #   

 

(23) 

 

with 
 233 uuw  . It reads in the Miura transformation as 

 

L 3 p1p2p1 2,   #   
 

(24) 

 

where k  are Lorentz scalar fields 0][ k . 

 
Let us note that the equation (21), which describes the Miura 
transformation in the Moyal Momentum algebra, presents a 
mapping between the KdV system of conformal weight 2 and 
the Burgers system of conformal weight 1, and the equation 
(23) describes the mapping between a system of conformal 
weight 3 (Boussinesq) and the Burgers system. these two 
mapping can be schematized as follows[9]: 

 



2

0,2
/


2

1,1




1

0,1



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  #   
 

(24) 

 



3

0,3
/


3

2,2




1

0,1




1

0,1




1

0,1
  #   
 

(25) 

 

In the case general, the sl n -kdv   burgers mapping can be 

seen as follows: 
 



n

0,n
/


n

n1,n1

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

1

0,1




1

0,1
. . .



1

0,1
  #   

 

(26) 

 
In fact, this mapping presents a physical phenomenon binding 

a level where we have a high magnetic field (
1B ) but 

high degree of degeneration with a level which has a weak 

magnetic field B  and without degeneration. This splitting is 
called the Zeeman Effect in The Framework of Moyal 
Noncommutativity . for more detailed seeing[11]. 
 

3. MOYAL NONCOMMUTATIVE HIERARCHY EQUATIONS 
In this section we will study the Lax representations of the NC 
Burgers and NC KdV equations with the higher-dimensional 
time evolution by the Lax-pair generating technique: 

 

L,Tmthh tm
0,   #   

 

(27) 

 

where the dimensions are given by tmm,Tmthhm . The 
Lax representations (27) is derived from the compatible 
conditions of the NC linear systems: 

 

L,



tm

Tmthh 0.

  #   

  #   

 

(28) 

 
This time, Eq. (29) is not an evolution equation. However as 
the previous discussion, some geometrical meaning would be 
expected. Then, the existence of infinite number of hierarchy 
equations would suggest infinite-dimensional hidden symmetry 
which is expected to be deformed symmetry from commutative 
one. 
 
3.1 Moyal NC Burgers hierarchy equation 

Now let us take the other ansatz for the operator  
 

LBurgers pu1  

Tn1thh pn
LBurgers T

n1thh
 .   #   

 

(29) 

 

Then the unknown part is reduced to  
T
n1thh


  which is 
determined so that Eq. (27) is a differential equation. The 
results are as follows. 
 

  For  n=1, the NC Lax equation gives the (second-order) NC 
Burgers equation. In fact the Lax pair in the noncommutative 
Moyal momentum formalism are explicitly given by 
 

LBurgers pu1x, t

TBurgers p2
2u1x, tpu1

2
x, tu1


x, t

  #   

 

(30) 

 
gives second-order of NC Burgers equation  
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u1
2
21u1u1


u1


0   #   

 

(31) 

 

With 
2

1

2 11 t

u

t uu



  and    .2

2 Burgerst Ln  The equation 

(32) is linear for 1.   
 

 For  n=2, the NC Lax equation gives the third-order NC 
Burgers equation. In fact, the Lax pair is given by 
 

LBurgers pu1t,x,

T3rdh p2
LBurgers T3rdh

 ,
  #   

 

(32) 

 
gives third-order of NC Burgers equation 

 

u1
2
6bu1u1





au1
3
1cu1

3



0,   #   
 

(33) 

 
The linearizable condition leads to the restricted situation  

,6b c=1 and a is an arbitrary real number, where the third-

order Moyal NC Burgers equation (33) becomes trivial 
 

u1
2
au1

3
0,   #   

 

(34) 

 
whose associated Lax pair is 

 

LBurgers pu1

T3rdh p3
3u1p2

3u1
2pa2

u1

u1

3 .
  #   

 

(35) 

 
This result translates the strong point of the formalism Moyal 
momentum, where the conditions of linearizability of the Moyal 
NC Burgers equation (34), obtained from the 3rd stucture 

hierarchy, ( ,6b  c=1  and a is an arbitrary real number) is 

Large then that obtained in [8] where ( a=0, b=1, c=2 , d=1) for 

witch the NC Burgers equation is .01 u   

 

 For n=3, the NC Lax equation gives the fourth-order NC 
Burgers equation. In fact, the Lax pair is given by 

 

LBurgers pu1t,x,

T4thh p3
LBurgers T4thh

 ,
  #   

 

(36) 

 
gives fourth-order of NC Burgers equation 
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3
du1

4
12bu1

u1
2
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u1
u1 
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2
0,

  #   

 

(37) 

 
The linearizable condition leads to the restricted situation  

,12,1  ba  
2

2

252 ,15   ec  and d is an arbitrary 

real number, where the third-order Moyal NC Burgers equation 
(38) becomes trivial 

 


3
du4u

2
0,   #   

 

(38) 

 
In this way, we can generate the higher-order Moyal NC 
Burgers equations. The ansatz for the (n+1)-th order is more 
explicitly given by 

 

Tn1thh pn
LT

n1thh


pn1


s0

n


scn

s uspns


l0

n

A lp
nl,   #   

 

(39) 

 

where lA  are homogeneous polynomials of uuu ,,  and so 

on, whose degrees are 1][ 1  lAl . 

 

3.2 Moyal NC KdV hierarchy equations 

We consider the sl2 -KdV operator 2

2 upLKdV   and the 

following ansatz for the operator 
 

Tn2thh pn
LKdVT

n2thh
 .   #   

 

(40) 

 

Then the unknown part is reduced to 


 hthnT )1(  which is 

determined so that Eq. (27) is a differential equation. The 
results are as follows. 
 

 For  n=1, the NC Lax equation gives the (third-order) NC 
KdV equation. In fact the Lax pair in the noncommutative 
Moyal momentum formalism are explicitly given by[8] 

 

LKdV p2
u2x, t

TKdV p3


3

2
pu2x, t3

2
u2

x, t

  #   

 

(41) 

 
gives third-order of NC KdV equation 

 


u2
2


3
2

u2u2



2u2
.   #   

 

(42) 

 

with ,22 3
uu t     KdVt L 1

3

  

 

 For n=2, the NC Lax equation gives the fourth-order NC 
KdV equation. In fact, the Lax pair is given by 

 (43) 
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LKdV p2
u2t,x,

T4thh p2
LKdVT4thh

 ,
  #   

 
 
gives fourth-order of NC KdV equation 

 

u2 t4u2 0,   #   
 

(44) 

 For n=3, the NC Lax equation gives the fifth-order NC KdV 
equation. In fact, the Lax pair is given by 

 

LKdV p2
u2t,x,

T5thh p3
LKdVT5thh

 ,
  #   

 

(45) 

 
gives fifth-order of NC KdV equation 

 

u2
2


4u2
5


5
2


2u2u2
3
52u2

u2



15
8

u2
u2

2
0,   #   

 

(46) 

 

 For n=4, the NC Lax equation gives the sixth-order NC KdV 
equation. In fact, the Lax pair is given by 

 

LKdV p2
u2t,x,

T6thh p4
LKdVT6thh

 ,
  #   

 

(47) 

 
gives sixth-order of NC KdV equation 

 

,022 6
 uu t

  
(48) 

 
In this way, we can generate the higher-order Moyal NC KdV 
equations. The ansatz for the (n+2)-th order is more explicitly 
given by 

 

Tn2thh pn
LT

n2thh


pn2


s0

n


scn

s u2

s
pns



l0

n

A l2pnl,   #   

 

(49) 

 

where lA  are homogeneous polynomials of uuu ,,  and so 

on, whose degrees are 2][ 2  lAl
. From these calculate we 

will generalize these results, indeed, 
 

 For the case n=2k yields to the (2k+2)th-order of NC KdV 
equation 

 

u2 t2k2u2 0,   #   
 

(50) 

 
the particular cases k=1 and k=2 correspond to the equations 

(45, 49). 
 

 For the case n=2k+1 yields to the (2k+3)th-order of NC KdV 
equations (43, 47) 
 

n 1 : 
u2

2


3

2
u2u2




2u2
.

n 3 :
u2

2


4u2

5


5

2


2u2u2

3
52u2

u2



15

8
u2
u2

2
0,

. . .

  #   

 

(51) 

 

with the transformation 
33

2 tt    one can recover the 

following equations[6] 
 

 
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 
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4
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2

2

2
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2

2

2

222

3
2
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7

5

3

1

uuuuuuu
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uuuuuuuu

uuuu
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t

t

t

t
























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

 

(52) 

 

4. NON STANDARD (PSEUDO-)BURGERS HIERARCHY 

In this section we will see other situations for the number n (ie. 
0, -1, -2, ...) in this case we have negative exponent p in the 
expression of the ansatz of T, and therefore in the second 
ansatz T’. We will propose a series of negative powers to p, 
this way of writing ansatz with negative powers will be call'd 
the Moyal pseudo-operators. Explicitly we have the following 
results 
 

  n = 0 case, the Lax equation 
 

L,Tt
0

 

(53) 

 
First ansatz 

 

T p0
L1 T



 

(54) 

 

where ][1][][][ 101 ATTL  , the Lax equation became 

 

tu1 2xA1   #   
 

(55) 

 

and 1][][  xt ; in this case the derivative with respect to 

time (dynamic) of 1u  coincides with the spatial derivative 

(static) of a field of same spin 1. 
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   n = -1 case, the Lax equation 
 

L,Tt
0

 

(56) 

 
First ansatz 

 

T p1
L1 T



 

(57) 

 

Here we have 0]'[][  TT  and 

 

  ......

1

43

1

33

1

2

2

1

1

11

1













pupu

pupuLp




 

(58) 

 
Second ansatz 

 

i

i

i

i

i

i

pBpBT 









 
~

00

 (59) 

 

where 
00

~
BB   and     iBB ii 

~
, the Lax equation 

became 
 

0u1 2xB0
 

(60) 

 

  n = -2 case, the associated Lax equation 
 

L,Tt
0

 

(61) 

 
First ansatz 

 

T p2
L1 T



 

(62) 

 

where 1][][ 


TT  and 

 

......4

1

2

3

1

2

1

1

1

2






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



pu

pupupLp




 (63) 

 
Second ansatz 

 

T
i0



C i1 pi 
i0



Ci1pi

 

(64) 

 

where  
11

~
 CC   and     iCC ii 

~
  , the Lax equation 

became 

 (65) 

t1u1 2xC1
 

 

  n = -3 case, the Lax equation 

L,Tt
0

 
(66) 

 
First ansatz 

 

T p3
L1 T



 

(67) 

 

where  2]'[][  TT   and 

 

......3 4

1

2

3

1

2

11

2











pu

pupuLp


 (68) 

 
Second ansatz 

 

T
i0



Di2 pi 
i0



Di2pi

 

(69) 

 

where 22

~
  DD  and     iDD ii 

~
, the Lax equation 

became 
 

t2u1 2xD2
 

(70) 

 

 n = -(k+1) case ( INk ), we have the following equation 

 

tk u1 2xEk
 

(71) 

 

5. CONCLUSION 

In this work, We used the Moyal Non commutative Lax 
generating technics, this study is seen as a generalization of 
our paper [8] for higher-order The KDV hierarchies. For this we 
have study Non commutative sln-KdV hierarchy equations by 
the means of Moyal Non commutative Lax generating 
technics. We have make some consistent assumptions shown 
to be essential in deriving the Lax pair of special 
noncommutative integrable systems, for this we calculate 
second, third and fourth-orders NC hierarchy equations for 
Burgers systems and we calculate the third, fourth, fifth and 
sixth-orders NC hierarchy equations for sln -KdV system. We 
have presented also the conditions of having linear equations 
and giving the ansatz Process and the NC hierarchy equations 
in the general case. 
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