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Abstract: In This paper we will study Non commutative sl,-KdV hierarchy equations by the means of Moyal Non commutative Lax generating technics.
We will make some consistent assumptions shown to be essential in deriving the Lax pair of special noncommutative integrables systems, for this we
calculate positive and negative orders of Moyal Noncommutative hierarchy equations for Burgers and KdV systems. We present also the conditions of
having linear equations and giving the ansatz Process and the NC hierarchy equations in the general case.

Index Terms: Moyal noncommutativity, integrability, Lax equations, Burgers equation, KdV equations

1. INTRODUCTION

More recently there has been a growth in the interest in non-
commutative geometry (NCG), which appears in string theory
in several ways [1]. Much attention has been paid also to field
theories on NC spaces and more specifically Moyal deformed
space-time, because of the appearance of such theories as
certain limits of string, D-brane and M-theory [2],[3]. Non-
commutative field theories emerging from string (membrane)
theory stimulate actually a lot of important questions about the
non-commutative integrables systems and how they can be
described in terms of star product and Moyal bracket [4],[5].
Recall that in the Moyal momentum algebra the ordinary
pseudo differential Lax operators [6] and [7]

L n a@ Un,ej@ﬁ (1)

jHZ

is naturally replaced by the Moyal momentum Lax operators

I—n a@ Unej@j, @

jHZ

This work is presented as follows: We give in section 2 our
convention notations with a recall of the basic lines of the
Moyal momentum algebra. Section 3 is devoted to a set up of
the Lax pair representation in higher order of special integrable
systems namely the KdV and Burgers modeles. In section 4
we gives the (Non standard) pseudo formulation of the Lax
generating technics applied to Burgers systems. section 5 is
for conclusion.
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2. ON THE MOYAL MEMENTUM ALGEBRA

2.1 Algebric Structure

This is the algebra based on arbitrary momentum differential
operators of arbitrary conformal weight m and arbitrary
degrees (r,s). Its obtained by summing over all the allowed
values of spin (conformal weight) and degrees in the following
way([6]-{10]

4 Kaso
SWOHENKN s Koz &, ©)
é@,s(
with ™ s the space of momentum differential operators of

conformal weight m and degrees (r,s) with r <S. Typical
operators of this space are given by

Lo od @ up . a0sp! 4)
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Noting m the unidimensional subspaces containing

prototype elements of kind U__, * p* or p“*u__ . Using

the @ -Leibniz rule, we can write, for fixed value of k:

SO0 4 GBIV g RAKAOR 2 B2k208  (5)

SRk

where ™ is the standard one dimensional sub-space of

Laurent series objects umfkp" considered also as the
L ke
(0 =0)-limitof m

é@,sl éj)@,l(
We can extract from the space ™  the subalgebra 0
which have the remarkable space decomposition

Kooi1o Koo a0  Kailo
e H N+ ©
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where 0 describes the Lie algebra of pure non local

84

1IJSTR©2013
Www.ijstr.org


mailto:aelboukili@gmail.com

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 5, MAY 2013

£@®,1¢

@ . :
momentum operators and 0 is the Lie algebra of local
Lorentz scalar momentum operators Ly(U) =u_, * p+u,
The latter can splits as follows

Koo __Keoo_ Kaio
% HT Koo )
éjl,l(
where 0 is the Lie algebra of vector momentum fields

1¢
Jo(U)=u,*p which are also elements of 0
Forgetting about the fields (of vanishing conformal spin)
,0¢
belongingto 0 is equivalent to consider the coset space

g_gl,lo Kmlo@@oo @®

one obtain the Diff(S') momentum algebra of vector fields
Jo(U) =u_* p namely

NI, OO, HJ, WO 9)

with W, =U_V, —U,V ;.
The extension of these results to non local momentum
operators is natural. In fact, one easily show that the previous

Lie algebras are simply sub-algebras of the huge momentum

0o 1¢
space “0 .Foragiven 0<k <1, we have
Ka, 10¢Jz?@ko¢dz?®10 (10)
and by virtue of (4)
/Ig_g}@k(fzf@ 10\1/‘ ,Jé@@ko,dz?@w (11)
and for —oo< p<Qq<l1l
é{)}@p(ﬁ'&}@qo o %}@,p@ao (12)

These Moyal bracket expressions show in turn that all the
Lot Koo, 1¢

subspaces 0  with —oo < p< (<1 are ideals of “0

2.2 Moyal Bracket
The Moyal bracket may be thought of as a deformation of the
Poisson bracket by the introduction of higher order derivative
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It has all the standard properties one would expect of such a
bracket:

A, g\ HMF, g,
Aaf (=bg, h\y Eaf, hiy =bAy, hiy,
F, 19, g =19, M, oy =1, 4, gNoy EO

: antisymmetry,
: linearity, 14

: Jacobi identity

(where a,b are independent of x and p). Moreover it has the
important property that

lim 1f, g\ HAF, g\ (15)
' 120)
where the bracket M, g\] is just the Poisson bracket
/m g\l/ﬂ Q@@ @Qﬁ (16)

P e

In the limit as @ — 0 the bracket collapses to the Poisson
bracket (14). It also has many other interesting properties,
amongst which is the fact that it may be written in terms of an
associative *-product defined by

a7

© S s (s ) ) o
frg=> 2D (007’ )@ 0,0)
s=0 S! j=0 J
This has the property that Igi"c') f *g = fg, and with this the
-
Moyal bracket takes the form:
f &g og &f

24 (18)
%@ < @ﬁi()g&i()q-é )@iaééfuﬁ%@o

s 'JH)

1, g*la

ns)

n
where f® =0°f is the prime derivative, [ j C =1
P

and 6’ij is a constant antisymmetric tensor. This definition of
the star operator may be extended to a 2N dimensional phase
QJ‘, p](

space with canonically conjugate variables as follows

frg= Zi Z( 1>U[@1,-‘6ip,f][8;,0;}9] (19)

j=0 s=0 '|0

2.3 Moyal Lax Formulation

terms. It turns out that the Jacobi identity is highly restrictive £o,n0
as to the nature of these terms, and one is lead uniquely to the Sly &=, (W i i
) quely The algebra n describes simply the coset
Moyal bracket:
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Space N n of S|n -Lax operators given by

(20)
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where we have set U, =1 and U, =0. This is a natural

generalization of the well known Sl, -momentum Lax operator

L, Ep? =, (21)

associated to the @-KdV integrable hierarchy that we will
discuss later. Such operator can be writen as

(22)

L, B 00 =00

where ¢ is a Lorentz scalar field.

The first nontrivial & -deformed Toda field theory is the one

associated to the S|, momentum Lax operator

Ls i p3 =U,p v, (23)

with W, =U,; — 6U'2. It reads in the Miura transformation as

(24)

Ly HQ HB050 RO =B =[O

where ¢, are Lorentz scalar fields [¢,]=0.

Let us note that the equation (21), which describes the Miura
transformation in the Moyal Momentum algebra, presents a
mapping between the KdV system of conformal weight 2 and
the Burgers system of conformal weight 1, and the equation
(23) describes the mapping between a system of conformal
weight 3 (Boussinesq) and the Burgers system. these two
mapping can be schematized as follows[9]:

%0,2(7%),10%5{0,10" é{o,w (24)
Kfo 3(7'42 ZU%KIO 10 Kio 10 é{o,lo (25)

In the case general, the sl -kdv — burgers mapping can be

seen as follows:
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n factors

In fact, this mapping presents a physical phenomenon binding

a level where we have a high magnetic field (B ~87') but
high degree of degeneration with a level which has a weak
magnetic field B and without degeneration. This splitting is
called the Zeeman Effect in The Framework of Moyal
Noncommutativity . for more detailed seeing[11].

3. MoYAL NONCOMMUTATIVE HIERARCHY EQUATIONS

In this section we will study the Lax representations of the NC
Burgers and NC KdV equations with the higher-dimensional
time evolution by the Lax-pair generating technique:

A, Tinan =35, HO, 27)

where the dimensions are given by & >m, Q:mth@h%am. The
Lax representations (27) is derived from the compatible
conditions of the NC linear systems:

L &xd 7]

% T SO,

(28)

This time, Eq. (29) is not an evolution equation. However as
the previous discussion, some geometrical meaning would be
expected. Then, the existence of infinite number of hierarchy
equations would suggest infinite-dimensional hidden symmetry
which is expected to be deformed symmetry from commutative
one.

3.1 Moyal NC Burgers hierarchy equation
Now let us take the other ansatz for the operator

I—Burgers Hp IElhl (29)

Tm@uhzh Hpn @-Burgers Erag]mzh-

Then the unknown part is reduced to ~ D¢ yhich s

determined so that Eq. (27) is a differential equation. The
results are as follows.

! For n=1, the NC Lax equation gives the (second-order) NC
Burgers equation. In fact the Lax pair in the noncommutative
Moyal momentum formalism are explicitly given by

LBurgers ap Eul Q,t(’

X 30
Tourgers HP? [22u; @, tQ [=%83 @, tU =70 A, 1O (30)
gives second-order of NC Burgers equation
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%@0 S TV D~ 0 (31)
With lJl = atz u = % and [alz J: 2= n+l|_BurgerJ The equation
o IR

(32) is linear for

! For n=2, the NC Lax equation gives the third-order NC
Burgers equation. In fact, the Lax pair is given by

LBurgers Hp @1@,“)

. 32)
T3rdd| ap2 Burgers Eérdm’

gives third-order of NC Burgers equation

Y2 (W04 b, 070 cau U0 o G0, )

The linearizable condition leads to the restricted situation
b =60, c=1 and a is an arbitrary real number, where the third-
order Moyal NC Burgers equation (33) becomes trivial

ey a0 (34)
é &au, =0,
whose associated Lax pair is
LBurgers Bp Eul (35)

Tara.n EpS [ZBuip? [ZBulp = Z# @ F=LS.

This result translates the strong point of the formalism Moyal
momentum, where the conditions of linearizability of the Moyal
NC Burgers equation (34), obtained from the 3rd stucture

hierarchy, ( b =66, c=1 and a is an arbitrary real number) is
Large then that obtained in [8] where ( a=0, b=1, c=2 , d=1) for

ISSN 2277-8616

The linearizable condition leads to the restricted situation
a=1b=-12, c:156?2,e=§92 and d is an arbitrary

real number, where the third-order Moyal NC Burgers equation
(38) becomes trivial

1 zsdm“UEZL% H0, (38)

In this way, we can generate the higher-order Moyal NC
Burgers equations. The ansatz for the (n+1)-th order is more
explicitly given by

Toann Hp" &L ETE g,
(39)

n n
Ep"? écu¥pns Ap"4,
s 5]

where A are homogeneous polynomials of u,u’,u” and so

on, whose degrees are [A,,]=1+1.

3.2 Moyal NC KdV hierarchy equations
We consider the sl, -KdV operator L, = p2 +U, and the
following ansatz for the operator

KX 40
Tazenn HP" &gy ETG o0 (40)

Then the unknown part is reduced to T('M)thfh which is

determined so that Eq. (27) is a differential equation. The
results are as follows.

! For n=1, the NC Lax equation gives the (third-order) NC
KdV equation. In fact the Lax pair in the noncommutative
Moyal momentum formalism are explicitly given by[8]

L kqv sz (=, @, 1O

witch the NC Burgers equation is U, = 0. (41)
Tkav Hps p @Jzﬁ,t(’ﬁ%ﬂ;ﬁ,tu
! For n=3, the NC Lax equation gives the fourth-order NC
Burgers equation. In fact, the Lax pair is given by gives third-order of NC KdV equation
I-Burgers Ep E“l‘leU (36) @/ﬁ EQUZUZ’E“ZU?" (42)
26 2 '
T4th£h Hp3 @—Burgers Erz{thzh'
with U, =0, U,, la. |=1+[L
gives fourth-order of NC Burgers equation 2 a2 l taJ [ KdV]
G . .
4, %y &3 For n=2, the NC Lax equation gives the fourth-order NC
A0 =0 22eQUA0 «alu; (054 50(!!??]1 (37)  KdV equation. In fact, the Lax pair is given by
O 0@} =02 e 2202 =hauiu, =2 Ho, (43)
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Lkav Ep? El, @ xQ
Tatnan EP? EL gy T30,

gives fourth-order of NC KdV equation

(44)

up E <, HO,

! For n=3, the NC Lax equation gives the fifth-order NC KdV
equation. In fact, the Lax pair is given by

Liav Eip? U, @ xQ
Tothn EP® &gy ETE

(45)

gives fifth-order of NC KdV equation

2 chuP=B duu s euur S ung do,  (40)

G . . .
For n=4, the NC Lax equation gives the sixth-order NC KdV
equation. In fact, the Lax pair is given by

Lkav Eip? [ZU, @ xQ

(47)
Tonn EP* &gy =Ty 0,
gives sixth-order of NC KdV equation
uz = ateuz =0, (48)

In this way, we can generate the higher-order Moyal NC KdV
equations. The ansatz for the (n+2)-th order is more explicitly
given by

T(huhzh ﬂpn Baﬂﬁhzh

n n (49)
Hp"? Fcsudpns Aizp"4,
s I

where A| are homogeneous polynomials of U,u’,u” and so

on, whose degrees are [A,,]=1+2. From these calculate we
will generalize these results, indeed,

a For the case n=2k vyields to the (2k+2)th-order of NC KdV
equation

(50)

L@ H%UQ EO,

the particular cases k=1 and k=2 correspond to the equations

ISSN 2277-8616
(45, 49).

a For the case n=2k+1 yields to the (2k+3)th-order of NC KdV
equations (43, 47)

ndll ;22 diuul =Rt
. ) 51
nE3 ;2SO dupuy S #uu R uiu? HO, 1)

with the transformation 6t3 —>—266t3 one can recover the
following equations[6]

(uz)t1 = U’2,
2u,u, +6%u, ,

, I 52
Lulu, +50° (uyu, +1u,u, )+ 60U, (52)

35,31, 4 3592 e eu? uu”
TeuUsu, +260°(4u,u,U, +U, +UjU, )

rrrrr

4. NON STANDARD (PSEUDO-)BURGERS HIERARCHY

In this section we will see other situations for the number n (ie.
0, -1, -2, ...) in this case we have negative exponent p in the
expression of the ansatz of T, and therefore in the second
ansatz T'. We will propose a series of negative powers to p,
this way of writing ansatz with negative powers will be call'd
the Moyal pseudo-operators. Explicitly we have the following
results

“n=0 case, the Lax equation

A, T [, @0 3)

First ansatz

T Hp® oLy =T° >4

where [L]=[T]=[T,]=1=[A]. the Lax equation became

<t 265, (53)

and [0,]=[0,]=1; in this case the derivative with respect to
time (dynamic) of U; coincides with the spatial derivative

(static) of a field of same spin 1.
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“h=a1 case, the Lax equation

AT H0 (0)
First ansatz
T Ep= oL, T° 1)
Here we have [T]=[T']=0 and
p‘1*|_1:1+u1p‘1_6ul P+ (58)
6%, p?—0uPp +.....
Second ansatz
T’: ZBI * pii :Zéipii (59)
i=0 i=0
where B, = I§O and [B,]= [é'i]: i, the Lax equation
became
60
<oy 2458, ©0
“h=2 case, the associated Lax equation
AT H0 (o)
First ansatz
T dp? oL, ET° (62)
where [T]=[T ]=-1 and
p72 * L1 = p71 +U; p72 - 6“1 p73 (63)
+0%, pt A+,
Second ansatz
(64)

e @)
T*HE Ciy op7 B ¢4 p
id iED
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SzUq H269€ 4

“n=-3 case, the Lax equation

T 0 (66)
First ansatz
T Ep?® oL, =T° 7
where [T]=[T']=-2 and
p72 L=y piz —U pi3 (68)
—36%U,p~ +......
Second ansatz
® ®
T*E® Di, sp7 B B,p (69)

where D, = IS_Z and [Di]:[f)i]:i, the Lax equation
became

S2U; H249P (70)

“n= -(k+1) case (k € IN), we have the following equation

U, H26SE 4 ()

5. CONCLUSION

In this work, We used the Moyal Non commutative Lax
generating technics, this study is seen as a generalization of
our paper [8] for higher-order The KDV hierarchies. For this we
have study Non commutative sl,-KdV hierarchy equations by
the means of Moyal Non commutative Lax generating
technics. We have make some consistent assumptions shown
to be essential in deriving the Lax pair of special
noncommutative integrable systems, for this we calculate
second, third and fourth-orders NC hierarchy equations for
Burgers systems and we calculate the third, fourth, fifth and
sixth-orders NC hierarchy equations for sl, -KdV system. We
have presented also the conditions of having linear equations
and giving the ansatz Process and the NC hierarchy equations
in the general case.

where C,=C, and [Ci]:[C,]=I , the Lax equation
became
(65)
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