
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 05, MAY 2015 ISSN 2277-8616

132
IJSTR©2015
www.ijstr.org

A Review Of Fault Tolerant Scheduling In Multicore
Systems

Shefali Malhotra, Parag Narkhede, Kush Shah, Samanth Makaraju, M. Shanmugasundaram

Abstract: In this paper we have discussed about various fault tolerant task scheduling algorithm for multi core system based on hardware and software.
Hardware based algorithm which is blend of Triple Modulo Redundancy and Double Modulo Redundancy, in which Agricultural Vulnerability Factor is
considered while deciding the scheduling other than EDF and LLF scheduling algorithms. In most of the real time system the dominant part is shared
memory.Low overhead software based fault tolerance approach can be implemented at user-space level so that it does not require any changes at
application level. Here redundant multi-threaded processes are used. Using those processes we can detect soft errors and recover from them. This
method gives low overhead, fast error detection and recovery mechanism. The overhead incurred by this method ranges from 0% to 18% for selected
benchmarks. Hybrid Scheduling Method is another scheduling approach for real time systems. Dynamic fault tolerant scheduling gives high feasibility
rate whereas task criticality is used to select the type of fault recovery method in order to tolerate the maximum number of faults.

Keywords: multicore processor, fault tolerant, dynamic scheduling, check-pointing, Earliest Deadline First, Task Graph, etc.

————————————————————

1. INTRODUCTION
As the Semiconductor Technology is growing day by day
it’s now possible to have a billion of transistors on a small
chip. These small transistors are more susceptible to both
transient and permanent faults. Consequently, by
increasing the budget of the chip, Multicore design is
popular for enhancing the framework throughput. By
expanding the quantity of transistors and contracting their
sizes, the rate of Software blunders on processors can't be
disregarded; consequently, the dependability of such
frameworks has been a standout amongst the most
essential difficulties as littler transistors are more
susceptible to faults.Time constraints, energy efficiency
throughput are the important criterion in the design process
of real time systems [1]. A multi-core processor has two or
more independent cores into a single package. A dual core
processor has two independent cores and quad core has
four cores. The advantages of multicore processor unit over
the many single core processors unit are (1) higher
throughput, (2) linear power consumption, (3) efficient
utilization of processor cores, (4) high performance per unit
cost [2].

ARM MPCore and IBM Cell are the examples of multicore
processors employed in the real time embedded systems.
Multicore processors are classified into two parts, (1)
homogenous or heterogeneous [3]. [4] states that most of
the existing multicore processors are homogenous. The
multicore processor is mainly concern for managing the
tasks in such a way to utilize the cores effectively. The
scheduler in the operating system is responsible for
keeping all the cores in the processor busy during the
execution of the real time tasks to improve the total
execution time. Faults can be categorised into these main
categories: permanent, transient and intermittent faults [5].
Permanent Fault such as wear off of any part which require
replacement from the spare part to restore the system
functionality. Transient fault are the short term faults and
can be distinguished from others with their duration of
occurrence and causes. These may occur due to external
noise and other sources Intermittent fault occurs happened
at interims on account of some inward tedious glitch of the
segments like temperature vacillations, power supply and
noise . To have fault tolerance in multicore systems task
scheduling is done. These fault tolerance scheduling
algorithms increase the system reliability. In different fault
tolerant system, software which is running on a single core
employ redundant execution at different level of abstraction,
at instruction and virtual machine level. Methods which
operate at instruction level have low error detection
latencies compare to hardware level. But methods which
work at process level allow error propagation. In multi-
threaded programs which are running on multicore
processors, Shared memory access is frequent than
interrupts or signals. For that achieve efficient execution of
replicas is very much difficult. For that different deterministic
languages are used. We can perform fault tolerance using
redundant execution of software in which replicated copies
give same output for given input. This method can be
implemented using a user level library so it does not require
modification in kernel. The error detection mechanism is
optimized to perform memory comparisons of the replicas
efficiently in user space [6]. Depends on the use of multiple
threads performance can be further increase. For
scheduling of soft real time tasks with non-real time tasks
two level hierarchical scheduling is used. This method
decreases average deadline miss ratio and also support the
real time requirements for other tasks. The principle

 Shefali Malhotra, is currently pursuing master’s degree
program in Embedded Systems in VIT University,
Vellore, India. E-mail: shefali.malhotra2014@vit.ac.in

 Parag Narkhede, is currently pursuing master’s degree
program in Embedded Systems in VIT University,
Vellore, India.
E-mail: narkhede.paragsuresh2014@vit.ac.in

 Kush Shah, is currently pursuing master’s degree
program in Embedded Systems in VIT University,
Vellore, India.
E-mail: 3shahkush.prakashkumar2014@vit.ac.in

 SamanthMakaraju, is currently pursuing master’s degree
program in Embedded Systems in VIT University,Vellore,
India. E-mail: makaraju.samanth2014@vit.ac.in

 M. Shanmugasundaramis currently working as Assistant
Professor (Sr) in Embedded Systems Division, School of
Electronics Engineering in VIT University, Vellore, India.
E-mail: mshanmugasundaram@vit.ac.in

mailto:shefali.malhotra2014@vit.ac.in
mailto:narkhede.paragsuresh2014@vit.ac.in
mailto:3shahkush.prakashkumar2014@vit.ac.in
mailto:makaraju.samanth2014@vit.ac.in
mailto:mshanmugasundaram@vit.ac.in

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 05, MAY 2015 ISSN 2277-8616

133
IJSTR©2015
www.ijstr.org

objective of hardware based algorithm is to discover a fitting
assignments task on the cores and tolerate processing
component failures which could either be rogeneous or
heterogeneous. The heterogeneity of the processors
implies that they have diverse velocities or transforming
abilities. The transient flaw likelihood that may happen in
transistors, entryways and even a bit, is called Architectural
helplessness variable (AVF) [5]. By averaging over some
time, this component can characterize the rate of soft errors
that can show up on a core; while it runs a task. This
algorithm when compared with other techniques we found
that the proposed fault tolerant method outflanks both TMR
and DMR methods about 35% in average. In computing
most common topologies in N-Modulo Redundancy are
TMR and DMR. TMR method is used when reliability of task
is important as it can only mask the faults. The problem is
that voter can also be faulty. The other method DMR
includes two cores running parallel and checks for the
similarity in the output thus only indicate the mismatch
doesn’t tolerate the fault so have to use separate
mechanism for fault recovery [5]. In software based fault
tolerance based approach replica of process are used so it
is necessary that replicas use same memory addresses.
We also need to ensure that leader and follower use same
replica copies. Replica can be created using fork system
call in which process generates same process as follower
process and it works same as leader process. If the result
of both leader and follower process is same then we can
say that there is no error. But if there is difference between
leader and follower process then error is there. We can use
check points for efficiency. If after execution of leader and
follower process result is same then previous checkpoint is
eliminated and if result is different than process is again
started from previous checkpoint. We can also use regular
interval methods for error detection. In that leader and
follower processes are compared after fixed interval of time
say 100ms. If we find difference it means fault detected. In
multicore architecture, no comparator hardware is used,
therefore task replication plays a key role in their
architecture. Choosing a check pointing with rollback
recovery, increases the probability of completing the task
on time [7]. In the memory allocation, malloc can be used
for memory allocation. Malloc can be non-deterministic
because it uses mmap for allocation of memory blocksof
large sizes and mmap itself is non-deterministic. So we
have to make sure that leader and follower use same
memory using mutex, which is locked and unlocked
deterministically.Many researches are going on scheduling
of periodic and aperiodic task. One of the classical
scheduling mechanism is on the basis of priority of the task
[8]. Authors in [9] introduces scheduling method which uses
the rate motonic scheduling in which the priority of the task
is defined on the basis of the time required. The task having
shorter time period have the highest priority and assigned
the core first. The Earliest Deadline First algorithm in which
the task with earlier deadline has the highest priority. An
alternate scheduling approach is Primary Backup (PB) that
is a standout amongst the other methodologies, in which
two version of the task is schedule on two different cores.
An acceptance test is required for validation of results.

2. SCHEDULING METHODOLOGIES
This paper discuss about various scheduling algorithm for
multi core system.

A. Hybrid Scheduling
The algorithm discussed in [5] is the combination of TMR
and DMR fault tolerance scheduling algorithm in which by
using the Agricultural Vulnerability Factor (AVF) of each
task the scheduler can predict the occurrence of fault when
the task is running on the core. Each task is defined as a 4-
tuple, Ti = (ai, di, ci, AVFi) where ai, di, ci and AVFi denote
arrival time, deadline, execution time and architectural
vulnerability factor of each task. For effective scheduling all
the tasks must meet their deadline and each core should
have one task assigned to it. Thus the efficiency of
algorithm is evaluated by total execution time of the task
and the utilisation of the core. Core utilisation can be
calculated as:

Utilisation =
 Pin

i=1

N × T
 (1)

Where, Pi denotes the time each core is busy with running
different tasks, N determines number of cores and T is total
execution time of the task group. As per [10], in Hybrid
Scheduling Method approach one can partition application
in to maximum number of parallel tasks so that best result
can be achieved. Each parallel task can run concurrently
with other tasks. Here It may occur that real time tasks and
non-real time task can run concurrently. In this hybrid
scheduling method, two level scheduling policy is used. At
the top level sporadic server is used for scheduling policy
and at bottom level, a rate-monotonic OS scheduler is
used.

B. Implementation Method
First, sorting of the tasks in waiting queue are done on the
basis of their arrival time. Than the number of cores
required for task to run in safe mode is determined by
comparing AVF of each task to the AVFthreshold. If the task
AVF is greater than or equal to AVFthresholdthan it will
executed in TMR mode or else in DMR mode. If any
faultoccurs than task is re executed in DMR mode [5].

Figure 1. The Schematic of Fault tolerant task scheduling

algorithm for multicore systems.

Calculate AVFthreshold

Determine Start time and task modes

Checking Accuracy of result of tasks

Sorting tasks by LLs/EDF

Finding Free Cores

Checking deadline constraint

Fault Tolerant Task Scheduler

 Core 1

 Core 2

 Core 3

Arrival Task Queue

Ready Task Queue

Multicore

Processor System

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 05, MAY 2015 ISSN 2277-8616

134
IJSTR©2015
www.ijstr.org

T
2

T4

T
1

T
3

T
6

T
5

AD2 AD5 AD1 AD6 AD3 AD4

 Time

Q
u
ad

 C
o
re

 P
ro

ce
ss

o
r

 P
1

P

2

 P

3

P
4

C. Non-preemptive EDF Scheduling
There are several dynamic priority scheduling
algorithmssuch as Earliest-Deadline-First (EDF), Least-
Laxity (LL), LeastSlack-Time-First (LST), and Minimum-
Laxity-First (MLF), where in each one tasks are prioritized
and scheduled according to specific parameter. As per [1]
EDF is an optmal algorithm for single processor system
with a set of preemptiveindepedent tasks.[11] proves that
the sufficient but not the necessary condition to have a
feasible scheduling for a number of preemptive task with
total utilization U on a set of M single core processor is

U ≪
M

2M−1
 (2)

This can be considered as a boundary for multicore
processor with M cores. Whenever a task is released, it will
be added toReadyList, and its absolute deadline (AD) will
be calculated. When there is only one idle core, the system
checks whether the task with the earliest deadline can be
scheduled on this idle core or not. If the task can be
scheduled, it will be assigned to the core, and the core will
be assumed busy during the execution. Otherwise, missing
the task deadline means that scheduling of this application
on the given architecture is not feasible. Consider an
example of a task set, consisting of six tasks is shown in
figure 2. Itshows the EDF scheduling of this task set on a
quad-core processor. From the figure, it can be seen
that,T2 has least AD so T2 is scheduled firston P1,
following that T1is scheduled on P2, T3 onP3. The
competition is observed between T4 and T5 where both are
released at the same time, but the absolute deadline of T5
is earlier than T4,soT5is scheduled first. The other tasks will
be scheduled on idle cores in the same manner [1].

Figure 2: EDF task scheduling of a task set on a quad-core processor

Reexecution and recovery with checkpoint are more
appropriate to be utilized with soft real time
systemswhereas time redundancy methods are appropriate
for hard real time systems with tight deadlines.However,
check pointing and re-execution method increases the total
execution time.In [12],real-time scheduling refers to the
problem in which there is a due date or time connected with
the execution of an undertaking. Author’s present a
scheduling scheme, called earliest deadline with energy
guarantee (EDeg) that combinely accounts for
characteristics of the energy source, capacity of the energy
storage as well as energy consumption of the tasks, and
time.

D. Check Pointing Optimization
There are trade-offs between applying frequent- and
infrequent checkpoints for tasks in a system. Frequent
check pointing decreases re-execution time in the presence

of faults, while task execution time is increased. On the
other hand, infrequent check pointing has lower time
overhead in the absence of faults, whereas the amount of
re-execution will be increased if a fault is detected. In [13], it
is shown that the optimalnumber (m) of checkpoints
considering k faults in the task is given by:

m = ||
K × C

Cs
 || (3)

Where, Cs is time overheads of saving a checkpoint, Cr is
time overhead of recovering from a checkpoint. The worst-
case response time of a task forCheckpointing with rollback
recovery (Cc) can be given by

Cc = C + m × Cs + K × Cs + Cr +
K×C

m+1
 (4)

Where (C+m x Cs) gives the execution time of a task using
checkpointing without any faults, and (Cs+Cr)+C/m+ 1 is
the cost offault recovery for single fault, (see also[p18]).If
the rate of occurrence of a fault on one core is high, then a
task needs more time to recover from faults, this may lead
to miss its deadline. In such cases hardware replication
methods are used as they have the ability of parallel
execution of the replicated copies of original tasks on the
other processing cores.

E. Harvesting Aware Real-Time Scheduling
Algorithm

In [14] in real time embedded system along with scheduling
of the tasks power management is also an issue that should
be undertaken. In this paper, authors propose a harvesting
aware real-time scheduling algorithm which aims to lessen
the energy consumption while attainably plan the
arrangement of intermittent tasks inside their due date
(deadline).This can be done by Dynamic Voltage and
frequency selection, executing the task within the speed
such that it can consume as much energy as required for its
completion meeting its deadline.

F. Dynamic Voltage and Frequency Selection
Algorithm

In [15] this paper Author's propose a low-multifaceted
nature and task assignment mapping, scheduling, and
power management method for multi-core real-time
embedded systems with energy harvesting. This method is
based on the CPU utilisation. This method combine new
dynamic voltage and frequency selection algorithm along
with the energy harvesting awareness form the proposed
utilisation based algorithm. On multi core system this
algorithm gives effective utilisation of harvested energy.

G. Dynamic Fault Tolerant Scheduling
[1] describes the dynamic fault tolerant scheduling (DFTS)
algorithm. This algorithm uses task criticality which is based
on "utilization" and "time of resource allocation". Task
utilization is used to dynamically select the type of fault
recovery method in order to tolerate the maximum number
of faults. Based on the task criticality parameters, task is
categorized into critical and non-critical. Critical tasks will be
replicated on separate cores to increase the probability of
on time task completion in faulty condition. Non critical
tasks are scheduled on a single core and check pointing

T5

T3 T6

T1

T2 T4

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 05, MAY 2015 ISSN 2277-8616

135
IJSTR©2015
www.ijstr.org

with rollback recovery fault tolerant technique is applied on
them. The scheduling feasibility rate of the DFTS algorithm
is higher than other fault tolerant scheduling methods.

H. Fault-Tolerant Scheduling Based On Task
Criticality

The algorithm mentioned in [1] selects a suitable fault
tolerance technique assignment for each task when the
resources for the task are available. During scheduling it is
to be taken care that no tasks will be scheduled until all
other tasks with higher priorities are scheduled and the
previously occurred faults in the system are tolerated. The
scheduler calculates the criticality threshold for the task
which is present at the first position of the ready list as soon
as ideal core is available in the system. The time when an
ideal core is allocated to each task is defined as Resource
Allocation Time (RAi).

Delayi= RAi - Ri (5)

Delay indicates the time wasted between the task entered
into Ready list and time when the scheduler assigns
hardware resources to that task and applies fault tolerant
policies. Increasing delay for a task may lead a noncritical
task becomes critical. So in order to calculate the criticality
threshold and tolerate the expected faults in each task, the
scheduler applies check-pointing technique to non-critical
tasks whereas hardware replication technique to critical
tasks.

I. Task Graph Scheduling Using NABBIT
As discussed in [16], this algorithm depends on someof the
information from the user about the task graph like Task
key, Sink task, Predecessors and Successors. After
providing this information the task graph scheduling
algorithm captures the structure of the task graph. This
algorithm is built on NABBIT task graph scheduler which is
based on the work stealing. In the task graph the tasks are
referred by keys and the runtime through a concurrent hash
map will control the execution. A created task is inserted
into the hash map using the INSERT TASK IF ABSENT
routine and later with a call to GETTASK. For every task
the runtime holds the join, notify array and status to
proceed further. The task execution begins with creation
and insertion of the sink task into the hash map, followed by
an invocation of the INITANDCOMPUTE function.
INITANDCOMPUTE starts the task and forwards its
immediate predecessors through calls to TRYI
NITCOMPUTE. Invoking INITANDCOMPUTE and
TRYINITCOMPUTE in a recursive fashion, the execution
expands the task graph and reaches one of the source
tasks with no incoming dependencies after executing the
task updates its status as Computed and starts notifying the
successors involved in its notify array. After the last
successor in the notify array, the task changes its status to
COMPLETED.

3. ANALYSIS OFSCHEDULING TECHNIQUES

Scheduling Algorithm Characteristics

Hybrid Scheduling

This task scheduling algorithm
can promise the right execution
of running task and decline
aggregate time of task
execution by expanding the
cores while considering AVF of
each task.

Non-Pre-Emptive EDF
Scheduling

EDF is an optimal algorithm for
single processor system with a
set of pre-emptive independent
tasks

Check Pointing
Optimization

check pointing decreases re-
execution time in the presence
of faults, while task execution
time is increased

Harvesting Aware Real-
Time Scheduling
Algorithm

This algorithm decreases the
energy consumption while
attainably plan the arrangement
of intermittent tasks

Dynamic Voltage And
Frequency Selection
Algorithm

This is the low-multifaceted
nature and task assignment
mapping, scheduling.

Dynamic Fault Tolerant
Scheduling

scheduling feasibility rate of the
DFTS algorithm is higher than
other fault tolerant scheduling
methods

Fault-Tolerant
Scheduling Based on
Task Criticality

Here, task criticality is used to
select the type of fault recovery
method in order to tolerate the
maximum number of faults.

Task Graph Scheduling
Using NABBIT

This algorithm can efficiently
recover from an arbitrary faults
that are proportional to the
amount of work lost

4. CONCLUSION
In this paper, numerous fault tolerant scheduling algorithms
applicable for multicore processor systems are discussed.
According to the system requirements the scheduling
technique should be choosen. But all algorithm of real time
scheduling have some restriction so it is future’s need to
suggest some hard real-time scheduling algorithm which
will decrease the energy and also timing overhead by
utilizing speed in such a way that response time of task is
less than or simply equivalent to the existing approach
despite the fact on the cost of lesser energy consumption.

REFERENCES

[1] Mohammad H. Mottaghi, Hamid R. Zarandi, ―DFTS:
A dynamic fault-tolerant scheduling for real-time
tasks in multicore processors‖, Microprocessors and
Microsystems 38 (2014) 88–97.

[2] F. Kong, W. Yi, Q. Deng, ―Energy-efficient
scheduling of real-time tasks on cluster-based multi-
cores‖, in: Design Automation and Test in Europe,
2011, pp. 1–6.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 05, MAY 2015 ISSN 2277-8616

136
IJSTR©2015
www.ijstr.org

[3] Saifullah, K. Agrawal, C. Lu, C. Gill, ―Multi-core real-

time scheduling for generalized parallel task
models‖, in: 32nd IEEE Real-Time Systems
Symposium (RTSS), 2011, pp. 217–226.

[4] Chen, L.K. John, ―Efficient program scheduling for
heterogeneous multi-core processors‖, in: Design
Automation Conference (DAC), 2009, pp. 927–930.

[5] ShamimShiravi* and Mostafa E. Salehi, ―Fault
Tolerant Task Scheduling Algorithm for Multicore
Systems‖,The 22nd Iranian Conference on Electrical
Engineering (ICEE 2014), May 20-22, 2014,pp.
885–890.

[6] Hamid Mushtaq, Zaid Al-Ars, Koen Bertels, ―Efficient
Software-BasedFault Tolerance Approach on
Multicore Platforms‖, EDAA, 2013

[7] Ying Zhang and KrishnenduChakrabarty, ―Fault
Recovery Based on Checkpointing for Hard Real-
Time Embedded Systems‖, Proceedings of the 18th
IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems (DFT’03) , 2013

[8] S. Gotoda, M. Itoa and N. Shibata, ―Task scheduling
algorithm for multicore processor system for
minimizing recovery time in case of single node
fault,‖ 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid),
pp.260,267, 13-16, 2012

[9] Ching-Chih Han, K.G. Shin and J. Wu, ―A fault-
tolerant scheduling algorithm for real-time periodic
tasks with possible software faults,‖ IEEE
Transactions on Computers, vol.52, no.3,
pp.362,372, 2003

[10] Pengliu Tan, Jian Shu and Zhenhua Wu, A Hybrid
Real-Time Scheduling Approach on Multi-Core
Architectures, JOURNAL OF SOFTWARE, VOL. 5,
NO. 9, SEPTEMBER 2010, pp 958-965.

[11] R.I. Davis, A. Burns,‖A survey of hard real-time
scheduling for multiprocessor systems‖, ACM
Comput. Surv. 43 (4) (2011) (Article 35).

[12] Agrawal, S., Yadav, R. S. and Ranvijay. ―A Pre-
emption Control Approach for Energy Aware Fault
Tolerant Real Time System‖, International Journal of
Recent Trends in Engineering, 381-386,2009.

[13] Y. Zhang, K. Chakrabarty,‖A unified approach for
fault tolerance and dynamic power management in
fixed-priority real-time embedded systems‖, IEEE
Trans. Comput.-Aided Des. Integr. Circ. Syst. 25 (1)
(2006) 111–125.

[14] Bertogna, M. and Baruah, S., ―Limited Preemption
EDF Scheduling of Sporadic Task Systems‖, IEEE
Transactions on Industrial Informatics, 579 – 591,
2010.

[15] Dehghan and Maryam, 2010. ―Adaptive checkpoint

placement in energy harvesting real-time systems‖,
18th Iranian Conference on Electrical Engineering
(ICEE), 932 - 937.

[16] Mehmet Can Kurt, SriramKrishnamoorthy, Kunal
Agrawal and Gagan Agrawal, ―Fault-Tolerant
Dynamic Task Graph Scheduling‖, SC14, November
16-21, 2014, New Orleans IEEE, 2014.

