
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VO`LUME 10, ISSUE 05, MAY 2021  ISSN 2277-8616 

11 
IJSTR©2021 
www.ijstr.org 

 Implementing Median Filter On CPU And MIC 
Using Histogram Approach 

 
Elmasry, Mohamed Abbas 

  
Abstract: The Median Filter (MF) is one of the image preprocessing approaches that require considerable computational resources to perform its 
operation in a moderate time.  The MF can be implemented on traditional CPUs and Intel Many Integrated Core Architecture MIC such as Xeon-Phi 
coprocessors.  This paper addresses the use of histogram algorithm to solve the MF on both traditional CPUs and MIC.  Different r values and frame 
sizes are investigated.    OpenMP has been deployed on CPUs and MIC.  Experimental results show that histogram approach performs better than 
traditional insertion sort approach.  It also shows that the use of both CPU and MIC architectures together can lead to much better results when proper 
scheduling strategy is used to assign the workloads. 
 
Index Terms: Median Filter, CPU, MIC, OpenMP, Histogram, Image Processing, Histogram Approach, 

——————————      —————————— 

1 INTRODUCTION                                                                     

Computationally intensive problems need massive computing 

resources.  It is impossible to perform sequential processing 

on a single machine.  The widespread deployment of modern 

architectures such as Intel Xeon CPUs and Intel-Xeon-Phi 

coprocessors can play an important role in accelerating the 

computations of such computationally intensive problems. 

Implementing efficient parallel algorithms to exploit the 

capabilities of such architectures is a key to achieve 

considerable speed-up when compared to classical 

approaches[1]. The median filter MF is considered a common 

approach that is widely used to reduce salt and pepper and 

speckle noise in an image. Due to the fat that the MF 

preserves the edges, it can be performed before edge 

detection operation to achieve better results. The median filter 

is considered a non-linear digital filtering technique. The 

median filter is calculated by replacing each pixel with the 

median of a window surrounding this pixel. The radius ‗r‘ of the 

window is a parameter to the filter. Thus, the pixel Pi,j is 

replaced by the median of the set defined as {Pi-r, j-r ,…, Pi+r, j+r}. 

This set is sorted and the item of index 2r
2
 + 2r is the median 

[2]. A MF with r = 2 is shown in  
Fig. 1. 

 
 

Fig. 1, Median Filter with r=2 
 
Many attempts have been investigated to optimize the 
MF[3],[4], [5], [6], [7].  Filtering video streams using MF is 
computationally intensive problem.  This is clear when the MF 
is applied with r =5 on a video stream of only one second in 4K 
resolution (3840 x 2880) with a frame rate of 30 fps.  This will 
result in about 20 billion sorting operations for a one-minute of 
4K video stream.  Each sorting operation will work on 121 data 
items. This paper introduces a histogram-based parallel 

implementation to the median filter on CPU and MIC.  The 
implementation will use traditional CPUs, and Xeon-Phi 
coprocessors.  The paper will also study the effect of using 
histogram approach instead of traditional insertion sort 
algorithm.  The rest of the paper is organized as follows: 
section 2 discusses the MF operation.  Section 3 describes the 
histogram approach. Section 4 presents the numerical results 
of the implementation. Section 5 presents the conclusion and 
directions for future work. 

 
2 MEDIAN FILTER OPERATION 
The MF operation depends mainly on the sorting operation 
that can be repeated in parallel since there is no dependency.  
Each sorting operation will have a set of data items and a 
single thread will be activated for it.  It is possible to activate 
multiple threads simultaneously to perform parallel sorting 
operations.  The parallel implementation of the median filter 
can be as in Fig. 2. 

Parallel Median Filter 
For each pixel position Pi, jdo 

Sort the values of the pixel positions ranging from 
Pi-r, j-r to Pi+r, j+r 

Select the middle one in the sorted list 
Replace the pixel value with the middle one 

End 

Fig. 2, The Parallel Implementation of the MF 
 
It is obvious that the sorting algorithm is essential in deciding 
the time required to perform the MF operation.  Another 
important factor is the r size which determines the data items 
of each sorting operation.  The time required to perform the 
parallel sorting is equivalent to the time needed to perform 
sorting operation on one window having (2r +1)

2
 items. 

 
3 HISTOGRAM APPROACH 
In the context of image processing, the histogram of an image 
usually refers to a histogram of the pixel intensity values. This 



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VO`LUME 10, ISSUE 05, MAY 2021  ISSN 2277-8616 

12 
IJSTR©2021 
www.ijstr.org 

histogram is a graph shows the number of pixels in the image 
at each different intensity value presented in that image. If 
each pixel is represented by an 8-bit data, then there are 256 
possible values.  It is possible to use a histogram of 256 
columns; each represents the frequency of the occurrence of 
the color having its value.  Consequently, it is simple to 
cumulatively sum the frequencies of colors in an ascending 
order till the sum value reaches the index 2r

2
+2r. Pseudo code 

of the histogram approach is shown in Fig. 3. 

 
4 EXPERIMENTAL RESULTS 
This section shows the results of implementing the MF on 
Intel-Xeon processor and Xeon-Phi coprocessor. Intel 
Composer Studio 2017 with OpenMPis used.  Intel-Xeon 
processors has dual Intel x86_64 processors each has 12-
core processors running at 2.4 GHz. It also has 96 GB 
memory, and Centos operating system.  Xeon-Phi node has a 
total of 60 active cores and the processor is running at 1GHz. 
It is equipped with 96 GB memory. Experiments are conducted 
on a single frame having three different resolutions; VGA (640 
x 480), HD (1280 x 960), and 4K (3840 x 2880). 
 

ALGORITHM: MEDIAN FILTER FOR MIC 
MEDIAN(IMAGE, RADIUS, WIDTH, HEIGHT) 

INPUT: 
IMAGE: INPUT IMAGE (2D ARRAY) 
WIDTH: WIDTH OF THE INPUT IMAGE 
HEIGHT: HEIGHT OF THE INPUT IMAGE 
RADIUS: RADIUS OF MEDIAN FILTER 

OUTPUT: 
MEDIAN: OUTPUT IMAGE WITH APPLIED MEDIAN FILTER 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 

10: 
11: 
12: 
13: 
14: 
15: 
16: 
17: 
18: 
19: 
20: 

BEGIN 
FOR ROWFROM RADIUSTO HEIGHT-RADIUS 
    FOR COLFROM RADIUSTO WIDTH-RADIUS 
HIST[256] = {0} 
        FOR RX IN ROW-RADIUS TO ROW+RADIUS 
            FOR RY IN COL-RADIUS TO COL+RADIUS 
HIST[IMAGE[RX][RY] += 1 
            END FOR 
        END FOR 
        COUNT = 0 
        FOR IDX FROM 0 TO 255 
             COUNT += HIST[IDX] 
             IF COUNT > RADIUS THEN 
                 MEDIAN[ROW][COL] = IDX 
EXIT FOR 
             END IF 
        END FOR 
    END FOR 
END FOR 
END 

Fig. 3, Pseudo Code of the Histogram Approach 
 

TABLE 1, Implementation of Histogram algorithm on CPU and 
MIC versus the use of Insertion Sort for VGA frame 

Size r 
CPU 

(Sorting) 
CPU 

(Histogram) 
MIC 

(Histogram) 

VGA 2 0.107944 0.131223 0.362253 

3 0.131347 0.13533 0.335598 

4 0.161886 0.156434 0.373549 

5 0.272879 0.175031 0.392383 

6 0.259636 0.206966 0.272821 

7 0.377391 0.182492 0.373906 

8 0.81152 0.192672 0.432415 

9 0.833513 0.166666 0.386287 

10 1.16794 0.212751 0.345792 

11 1.61054 0.180054 0.637261 

12 2.10354 0.196224 0.762281 

13 2.95465 0.191362 0.765866 

 

Different r values ranging from 2 to 13 are also investigated. 
TABLE 1 shows the results for implementing the MF on a VGA 
frame using insertion sort versus the use of histogram 
approach on the same CPU architecture.  The histogram 
algorithm performs better than the insertion sort algorithm 
when r exceeds 3. A speedup factor of 15.4 is achieved for 
r=13.Histogram algorithm implementation on MIC performs 
better than insertion sort when r exceeds 6.  A speedup factor 
of 3.8 is achieved for r=13in this scenario. 

 
TABLE 2, Implementation of Histogram algorithm on CPU and 

MIC versus the use of Insertion Sort for HD frame 

Size r 
CPU 

(Sorting) 
CPU 

Histogram) 
MIC 

(Histogram) 

HD 

2 0.400991 0.56954 0.819595 

3 0.375543 0.520846 1.15746 

4 0.527809 0.582261 0.986819 



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VO`LUME 10, ISSUE 05, MAY 2021  ISSN 2277-8616 

13 
IJSTR©2021 
www.ijstr.org 

5 0.703423 0.638658 1.27088 

6 0.960508 0.629441 0.850553 

7 1.61261 0.69143 1.1354 

8 2.11007 0.64441 1.7546 

9 3.44712 0.661576 1.63117 

10 4.50732 0.78813 1.58411 

11 6.23596 0.806266 1.86377 

12 9.07234 0.805719 2.77015 

13 11.3755 0.750359 2.24823 

 

For HD resolution,  

TABLE 2 shows that the histogram algorithm performs better 

than the insertion sort algorithm on CPU when r exceeds 4. A 

speedup factor of 15.1 is achieved for r=13. Histogram 

algorithm implementation on MIC performs better than 

insertion sort when r exceeds 5.  A speedup factor of 5 is 

achieved for r=13in this scenario. For 4K resolution,  
TABLE 3shows that the histogram algorithm performs better 
than the insertion sort algorithm on CPU when r exceeds 4. A 
speedup factor of 13.3 is achieved for r=13. Histogram 
algorithm implementation on MIC performs better than 
insertion sort when r exceeds 7.  A speedup factor of 5.57 is 
achieved for r=13in this scenario. 

 
TABLE 3, Implementation of Histogram algorithm on CPU 

and MIC versus the use of Insertion Sort for 4K frame 
Size 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R 
 

CPU 
(Sorting) 

CPU 
(Histogram) 

MIC 
(Histogram) 

4K 

2 3.21055 4.39099 8.63384 

3 3.13806 4.40473 7.08617 

4 4.08433 5.12625 10.8289 

5 5.51453 5.44277 6.99446 

6 7.6007 5.57322 11.7384 

7 11.2081 6.08744 11.7305 

8 16.7907 5.50116 11.9003 

9 24.4226 6.17103 14.6318 

10 34.6824 5.78344 11.0968 

11 48.1041 6.73073 19.9042 

12 69.9485 6.55753 19.1639 

13 90.3898 6.77607 16.2178 

 

Another set of experiments has been conducted to study the 

effect of distributing the workload between the CPU and MIC 

using speed-based scheduling strategy described in [8]. 

Based on this scheduling strategy,  
TABLE 4 shows the percentage of sorting operations assigned 
to each architecture for VGA resolution. TABLE 5and TABLE 6 
show this percentage for HD and 4K resolutions respectively. 

 
TABLE 4, The percentage of sorting operations assigned 

to CPU and MIC for VGA resolution. 

r 
# of Sorting 
Operations 

CPU% MIC% 

2 304964 73.40843 26.59157 

3 303849 71.26312 28.73688 

4 302736 70.4832 29.5168 

5 301625 69.15286 30.84714 



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VO`LUME 10, ISSUE 05, MAY 2021  ISSN 2277-8616 

14 
IJSTR©2021 
www.ijstr.org 

6 300516 56.86294 43.13706 

7 299409 67.20118 32.79882 

8 298304 69.17677 30.82323 

9 297201 69.85892 30.14108 

10 296100 61.90965 38.09035 

11 295001 77.97006 22.02994 

12 293904 79.52812 20.47188 

13 292809 80.00873 19.99127 

 
TABLE 5, The percentage of sorting operations assigned 

to CPU and MIC for HD resolution 

r 
# of Sorting 
Operations 

CPU% MIC% 

2 1224324 59.00039 40.99961 

3 1222089 68.96597 31.03403 

4 1219856 62.89157 37.10843 

5 1217625 66.55432 33.44568 

6 1215396 57.47003 42.52997 

7 1213169 62.15138 37.84862 

8 1210944 73.1385 26.8615 

9 1208721 71.14482 28.85518 

10 1206500 66.77697 33.22303 

11 1204281 69.80318 30.19682 

12 1202064 77.46788 22.53212 

13 1199849 74.97626 25.02374 

 
TABLE 6, The percentage of sorting operations assigned 

to CPU and MIC for 4K resolution 

r 
# of Sorting 
Operations 

CPU% MIC% 

2 11045764 66.28754 33.71246 

3 11039049 61.66767 38.33233 

4 11032336 67.87088 32.12912 

5 11025625 56.23809 43.76191 

6 11018916 67.80648 32.19352 

7 11012209 65.83533 34.16467 

8 11005504 68.38679 31.61321 

9 10998801 70.33562 29.66438 



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VO`LUME 10, ISSUE 05, MAY 2021  ISSN 2277-8616 

15 
IJSTR©2021 
www.ijstr.org 

10 10992100 65.7384 34.2616 

11 10985401 74.72969 25.27031 

12 10978704 74.50558 25.49442 

13 10972009 70.53097 29.46903 

 

 
TABLE 7shows the speedup factor when using both CPU and 
MIC in implementing the MF with respect to the classical 
insertion sort on CPU for VGA, HD, and 4K resolutions. 

Fig. 4 shows that using both CPU and MIC led to better 
speedup factor rather than using the CPU only. 

 
TABLE 7, Speedup factor when using both CPU and MIC 

for VGA, HD, and 4K 

r Speedup (VGA) Speedup (HD) Speedup (4K) 

2 1.120579286 1.193316231 1.103024242 

3 1.361950192 1.045479433 1.155272482 

4 1.468224623 1.441340777 1.173917536 

5 2.254472824 1.654900808 1.801598436 

6 2.206157853 2.655244587 2.011297021 

7 3.077307066 3.752583587 2.796650991 

8 6.088640585 4.477014748 4.46315843 

9 7.158853766 7.323747778 5.626766623 

10 8.867283512 8.564338458 9.122287736 

11 11.47204576 11.0802555 9.563717896 

12 13.47962896 14.53496622 14.31691127 

13 19.29802859 20.21983483 18.91305445 

 

 
Fig. 4, Speedup Factor for CPU only and CPU+MIC for 
Different r and resolutions using Histogram Approach 

 
5 CONCLUSION 
The paper shows that the use of modern architectures in 
conjunction with traditional CPU can lead to better 
performance in solving computationally intensive problems 
such as the MF. Deploying both CPU and MIC in implementing 
the MF using speed-based scheduling strategy will certainly 
lead to better speedup factor in comparison with the use of 
CPU only. At least more than 20% speedup is achieved when 
using both Intel Xeon CPU and Intel Xeon-Phi coprocessor. It 
is also clear that the algorithm used plays an important role in 
enhancing the results. Histogram approach on CPU has led to 
better results under certain values of r. However, this paper 
has proved that using both CPU and MIC together will lead to 
better performance irrespective of r value. Assigning suitable 



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VO`LUME 10, ISSUE 05, MAY 2021  ISSN 2277-8616 

16 
IJSTR©2021 
www.ijstr.org 

workload to each architecture type and using suitable 
scheduling strategy will eventually lead to better speedup 
factor.  Due to the nature of the MF operations where 
interactions between tasks are minimal, the use of speed-
based scheduling strategy can best fit the distribution of the 
workload among different architectures based on its individual 
speed. This paper is considered a step towards a proven 
system for solving computationally intensive problems on 
CPUs and MICs. 

ACKNOWLEDGMENT 
Computation for the work described in this paper was 
supported by King Abdulaziz University‘s High Performance 
Computing Center (Aziz Supercomputer) 
(http://hpc.kau.edu.sa). 

 
REFERENCES 
[1] H. M. Faheem and B. König-Ries, ―A Multiagent-based 

Framework for Solving Computationally Intensive 
Problems on Heterogeneous Architectures,‖ in 
Proceedings of the 16th International Conference on 
Enterprise Information Systems-Volume 1, 2014, pp. 526–
533. 

[2] D. S. Richards, ―VLSI Median Filters,‖ IEEE Trans. 
Acoust., 1990. 

[3] I. Katib, ―Implementing Median Filter on Heterogeneous 
Architectures,‖ Int. J. Comput. Appl., 2020. 

[4] S. Perreault and P. Hébert, ―Median filtering in constant 
time,‖ IEEE Trans. Image Process., 2007. 

[5] G. Gupta, ―Algorithm for Image Processing Using 
Improved Median Filter and Comparison of Mean, Median 
and Improved Median Filter,‖ Int. J. Soft Comput., 2011. 

[6] K. Verma, B. Kumar Singh, and A. S. Thokec, ―An 
enhancement in adaptive median filter for edge 
preservation,‖ in Procedia Computer Science, 2015. 

[7] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, ―Filter pruning 
via geometric median for deep convolutional neural 
networks acceleration,‖ in Proceedings of the IEEE 
Computer Society Conference on Computer Vision and 
Pattern Recognition, 2019. 

[8] H. M.Faheem and B. König-Ries, ―A New Scheduling 
Strategy for Solving the Motif Finding Problem on 
Heterogeneous Architectures,‖ Int. J. Comput. Appl., 2014. 

 
 
 
Elmasry, Mohamed Abbas 
Management Information Systems, National Egyptian E-
Learning University, Giza, Egypt 
malmasry@eelu.edu.eg 
 
 
 
 
 
 
 
 
 
 

http://hpc.kau.edu.sa/
mailto:malmasry@eelu.edu.eg

