Survival Analysis By Using Cox Regression Model With Application

Dr. Monem A. Mohammed

Abstract: Cox regression model is one of the models can be used in analyzing survival data and we can detect relationship between the explanatory variables and their survival time, so the cox regression is semi parametric model that consist two parts, the first part is nonparametric ($\lambda_1(t)$) and other is parametric part ($e^{\beta \cdot x}$) where (β) is the vector of unknown parameters, (x) is the vector of explanatory variable. The data which used in this study is type one of censoring was taken from hospital with left-censored data, testing distribution of survival time by using goodness of test and we find the distribution of survival time is unknown. Selecting cox regression model as the best model to analysis data by checking the coefficients using (partial likelihood) method with (Wald) test which shown that only two parameters(treatment and anemia) are effect on survival time.

Index Terms: Cox regression model, survival time, with left-censored data, testing distribution of survival time by using goodness of fit, Kaplan–Meier estimator to estimating the survival function and partial likelihood method with (Wald) test.

1 INTRODUCTION

Survival analysis is a branch of statistics which deals with analysis of time to events, such as death in biological organisms and failure in mechanical systems. This topic is called reliability theory or reliability analysis in engineering, and duration analysis or duration modeling in economics or event history analysis in sociology. Survival analysis attempts to analysis the proportion of a population which will survive past a certain time. The Cox regression model (Cox, 1972) is the most popular method in regression analysis for censored survival data. However, due to the very high dimensional space of the predictors, the standard maximum Cox partial likelihood method cannot be applied directly to obtain the parameter estimates. To deal with the problem of co linearity, the most popular approach is to use the penalized partial likelihood which was proposed by Tibshirani (1995) and is called the least absolute shrinkage and selection operator (Lasso) estimation. In the case of biological survival, death is unambiguous, but for mechanical reliability, failure may not be well-defined, for there may well be mechanical systems in which failure is partial, a matter of degree, or not otherwise localized in time. Even in biological problems, some events (for example, heart attack or other organ failure). More generally, survival analysis involves the modeling of time to event data; in this context, death or failure is considered an "event" in the survival analysis literature traditionally only a single event occurs for each subject, after which the organism or mechanism is dead or broken. The study of recurring events is relevant in systems reliability, and in many areas of social sciences and medical research. The survival function, also known as a survivor function or reliability function, is a property of any random variable that maps a set of events, usually associated with mortality or failure of some system, the term survival function is used in a broader range of applications, including human mortality.

2 DEFINITIONS:

Let (T) be a continuous random variable with cumulative distribution function $F(t)$ on the interval $[0, \infty)$. Its survival function is:

$$S(t) = \Pr(T > t) = \int_t^\infty f(u)du = 1 - F(t)$$

2.1 Properties:

Every survival function $S(t)$ is monotonically decreasing, i.e. $S(u) \leq S(t)$ for all $u \geq t$. The time, $t = 0$, represents some origin, typically the beginning of a study or the start of operation of some system. $S(0)$ is commonly unity but can be less to represent the probability that the system fails immediately upon operation.

3 Lifetime distribution function and event density:

The lifetime distribution function, conventionally denoted F, is defined as the complement of the survival function,

$$F(t) = \Pr(T \leq t) = 1 - S(t).$$

If F is differentiable then the derivative, which is the density function of the lifetime distribution, is conventionally denoted f,

$$f(t) = F'(t) = \frac{d}{dt}F(t).$$

The function $f(t)$ is sometimes called the event density; it is the rate of death.

4 Hazard function and cumulative hazard function:

The hazard function, denoted λ, is defined as the event rate at time (t) Conditional on survival until time (t) or later (that is, $T \geq t$),

$$\lambda(t) = \lim_{dt \to 0} \frac{\Pr(t < T \leq t + dt \mid T > t)}{dt} = \frac{f(t)}{S(t)} = -\frac{S'(t)}{S(t)}.$$

The hazard function must be non-negative, $\lambda(t) \geq 0$, and its integral over $[0, \infty]$ must be infinite, but is not otherwise

Dr. Monem A. Mohammed University of Sulamani
Email: monem_aziz2003@yahoo.com

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 11, NOVEMBER 2014 ISSN 2277-8616
constrained: it may be increasing or decreasing, non-monotonic, or discontinuous, also hazard function can alternatively be represented in terms of the cumulative hazard function, denoted by \(\Lambda(t) \):

\[
\Lambda(t) = -\log S(t)
\]

so transposing signs and exponentiation

\[
S(t) = \exp(-\Lambda(t))
\]

or differentiating (with the chain rule)

\[
\frac{d}{dt} \Lambda(t) = -\frac{S'(t)}{S(t)} = \lambda(t).
\]

The name "cumulative hazard function" is derived from the fact that:

\[
\Lambda(t) = \int_0^t \lambda(u) \, du
\]

Which is the “accumulation” of the hazard over time? From the definition of \(\Lambda(t) \), we see that it increases without bound as \(t \) tends to infinity (assuming that \(S(t) \) tends to zero). This implies that \(\lambda(t) \) must not decrease too quickly, since, by definition, the cumulative hazard has to diverge. For example, \(\exp(-t) \) is not the hazard function of any survival distribution, because its integral converges to 1.

4 Types of data:

4.1 Complete data: that is meaning the values of each sample unit is observed or known.

4.2 Censored data: that is mean a form of death dates of a subject are known, in which case the lifetime is known. If it is known only that the date of death is after some date, this is called right censoring. Right censoring will occur for those subjects whose birth date is known but who are still alive when they are lost to follow-up or when the study ends. If a subject's lifetime is known to be less than certain duration, the lifetime is said to be left-censored. It may also happen that subjects with a lifetime less than some threshold may not be observed at all: this is called truncation. We generally encounter right-censored data. Left-censored data can occur when a person's survival time becomes incomplete on the left side of the follow-up period for the person. As an example, we may follow up a patient for any infectious disorder from the time of his or her being tested positive for the infection. We may never know the exact time of exposure to the infectious agent.

5 Multiple Regression model:
A Multiple Regression model is a model with a multiple explanatory variables and we can represent as the follows:

\[
\mathbf{Y} = \mathbf{\beta} \mathbf{Z} + \mathbf{\varepsilon}
\]

Where \(\mathbf{Y} \) is the response variable, \(\mathbf{\beta} \) is the vector of unknown parameters, \(\mathbf{Z} \) is a non-singular matrix of explanatory variables, so the Properties of multiple regression model it is important to make sure that the underlying assumptions hold. Plotting residuals versus the \(\mathbf{Z} \) values and other residual diagnostics are useful to check the normality of data.

5.1 Proportional Hazards Models:
These models an important model which usually associated with mortality or failure of some system, so we can find a combined model with survival time and hazard function as follows:

\[
\lambda(t; z) = \lambda_0(t) \exp \left(\mathbf{\beta} \mathbf{Z} \right) \quad (1)
\]

Where \(\lambda(t, z) \) is an arbitrary hazard rate function at time \(t \) for an individual with covariates \(z \), \(\lambda_0(t) \) is an arbitrary unspecified base-line hazard function for continuous \(t \), \(\mathbf{\beta} \) is the regression coefficients, The density function, \(S(t) \) is:

\[
S(t; z) = \left(1 - S(t) \right) S(t; z) = \exp \left(- \int_0^t \lambda_0(u) \exp \left(\mathbf{\beta} \mathbf{Z} \right) du \right) \quad (2)
\]

The regression coefficients \(\mathbf{\beta} \) may be estimated with assumptions made about the hazard function then one would maximize the likelihood functions and would consider contributions made to the hazard rate by censored data. There are some Proportional Hazards Models for survival data as follows:

5.2 Exponential regression model:
In this model assume that (survival time) have exponential distribution with (pdf):

\[
f(t \mid z) = \frac{1}{\lambda_0} \exp \left(-\frac{t}{\lambda_0} \right), \quad t > 0 \quad (3)
\]

Where \(\lambda_0 \) is a constant hazard function with

\[
\lambda_0 = E(t \mid z) = \exp \left(\mathbf{\beta} \mathbf{Z} \right)
\]

which depend on regression parameters \(\mathbf{\beta} \) and explanatory variables \(z \). Therefore the survival functions as follows:

\[
S(t \mid z) = \exp \left(- \frac{t}{\exp(\mathbf{\beta} \mathbf{Z})} \right) \quad (4)
\]

Then the likelihood function is the product of the likelihood of each datum as follows:

\[
L(\mathbf{\beta}, t, z) = \prod_{i=1}^n \frac{1}{\exp(\mathbf{\beta} \mathbf{Z}_i)} \exp \left(-\frac{t}{\exp(\mathbf{\beta} \mathbf{Z}_i)} \right) \quad (5)
\]

5.3 Wibull Regression Model:
In this model assume that (survival time) have continuous probability Wibull distribution with (pdf):

\[
f(t \mid z) = \frac{\alpha}{\exp(\mathbf{\beta} \mathbf{Z})} \left(\frac{t}{\exp(\mathbf{\beta} \mathbf{Z})} \right)^{\alpha-1} \exp \left(-\frac{t}{\exp(\mathbf{\beta} \mathbf{Z})} \right)^\alpha, \quad t > 0, \quad \alpha > 0 \quad (6)
\]

The hazard function of wibull regression model can take
follows formula:
\[\lambda(t \setminus z) = \frac{a}{\exp\left(\frac{t}{\exp(b^2)}\right)^{a-1}} \quad \ldots (7) \]

Then, the survival function has the following formula:
\[S(t \setminus z) = \exp\left(\frac{-t}{\exp(b^2)}\right)^{a} \quad \ldots (8) \]

So, the likelihood function can take the following:
\[L(\beta, t, z) = \prod_{i=1}^{n} \frac{a^{d_i-1}}{\exp(\frac{t_i}{\exp(b^2)})^a} \exp(\frac{t_i}{\exp(b^2)})^a \quad \ldots (9) \]

6 Cox’s Regression Model:
This model one of important models published by (D.R. Cox in 1972) and is one of most frequently articles in statistics and medicine, which usually associated with mortality or failure of some system, he suggested that model depend on (hazard rate) in time (t), as the follows:
\[\lambda(t; z) = \lambda_0(t) \exp(\beta Z) = \lambda_0(t) \exp(\sum_{i=1}^{p} \beta_i Z_i) \quad \ldots (10) \]
\[\lambda_0(t) : \text{Initial hazard function when all values of (Z = 0)}. \]
\[\beta : \text{are unknown’s regression coefficients}. \]
\[\{Z\} : \text{is the p-dimensional vector of covariates}. \]

We can write survival function of (10) as follows:
\[S(t; Z) = \{S_0(t)\} \exp(\sum_{i=1}^{p} \beta_i Z_i) \quad \ldots (11) \]

Where \(\exp(\sum_{i=1}^{p} \beta_i Z_i) \) is the proportional hazard function. But, Cox model is a semi-parametric model with free distribution. So, the estimation problem for (\(\beta \)) is the same under any transform. Only the rank statistic r (\(\cdot \)) can carry information about (\(\beta \)) when \(\lambda_0 \) is completely unknown. It follows that the rank statistic is marginally sufficient to estimate (\(\beta \)). To apply the rank statistic to get inferences about (\(\beta \)), one would use the marginal distribution of the ranks and the marginal likelihood.

7 Marginal Likelihood:
Suppose (n) individuals are observed to fail at times (\(T_i \), i = 1, ..., n), with corresponding covariates (\(z_1, ..., z_n \)). Assume that all failure times are distinct, i.e. no two people (or more) fail are censored at the same time. The order statistic is defined to be \(O(t) = [T(1); T(2), ..., T(n)] \) and refers to the T is being ordered increasingly i.e. (T(1) < T(2) < ... < T(n)). The rank statistic is defined to be (r(t) = [(1), (2), ..., (n)] and refers to the label attached to the order. To apply the rank statistic to get inferences about (\(\beta \)) one would use the marginal distribution of the ranks and the marginal likelihood. The marginal likelihood is proportional to the probability that the rank vector is observed, i.e.
\[Pr(r, \beta) = Pr(r = [1, 2, 3, ..., n]) \cdot \beta = \]
\[\int_{0}^{\infty} \int_{t(1)}^{\infty} ... \int_{t(n-1)}^{\infty} \prod_{i=1}^{n} f(t_i; \lambda(t_i)) dt_n ... dt_1 \]
and we find :
\[Pr(r, \beta) = \frac{\exp(\sum_{i=1}^{n} \beta_i Z_i)}{\prod_{i=1}^{n} \exp(\lambda(t_i))} \quad \ldots (12) \]

Where \(R(t_i) \) is \(R(t) = \{t: i \geq t \} \) the risk set at time (t), that is the group of individuals (i) that are under observation at time (t), i.e., \(T(i) = \{(i), (i+1), ..., (n)\} \).

To deal with censored data one must modify this last argument. If censoring Takes place, the group then acts transitively on the censoring time and the invariant in the sample space is the first (k) rank variables, i.e. (1), (2) ... (k). For example, if we observe the following failures: \(T_1 = 110, T_2 = 70, T_3 = 64, T_4 = 90 \), with (12) symbolizing a censored observation. Then the following rank statistics are possible:
\[[3, 2, 4, 1], [2, 3, 4, 1], [2, 4, 3, 1], [2, 4, 1, 3]. \]

Suppose (k) items are observed, labeled (1), (2), ..., (k), and have failure time \(\{T(1), T(2), ..., T(n)\} \) with corresponding covariates \(\{z_1, ..., z_n\} \). Suppose further that (\(m_i \)) observations with covariates \(\{z_{i1}, ..., z_{im_i}\} \) are censored in the ith interval \([T_i, T_{i+1}) ; i = 1, 2, ..., k, \) where \(T(0) = 0 \) and \(T(k+1) = \infty \). The marginal likelihood of (\(\beta \)) is computed as the probability that the rank statistic should be one of the possibilities, which is then the sum of the large number of terms as in equation (20). The possible rank vectors can be characterized as:
\[T_1 < T_2 < ... < T_k \]
And \(T_1 < T_{i+1}, T_{i+2}, ..., < T_{im_i}, i = 0, 1, 2, ..., k, ... (13) \)

Where \(\{T_{i+1}, ..., T_{im_i}\} \) (the unobserved failure times) associated with the censored individuals in \(\{T_i, ..., T_{i+1}\} \). So, the event (\(T_i \)) has the conditional probability:
\[h(T_i) = \exp[- \sum_{i=1}^{m_i} (\beta Z_i) \int_{0}^{T_i} \lambda_0(u) du], i = 1, 2, ..., k \quad ... (14) \]

So, the Probability marginal likelihood is proportional to the probability of the event (14) is:
\[\int_{0}^{\infty} \int_{t(1)}^{\infty} ... \int_{t(k-1)}^{\infty} \prod_{i=1}^{n} f(t_i; \lambda(t_i)) \lambda(t_i) dt_k ... dt_1 . \]

Now, we can find:
\[Pr(r, \beta) = \frac{\exp(\sum_{i=1}^{n} \beta_i Z_i)}{\prod_{i=1}^{n} \exp(\lambda(t_i))} \quad \ldots (15) \]

8 Partial Likelihood:
Cox (1975) has shown that this partial log-likelihood can be treated as an ordinary log-likelihood to derive valid (partial) MLEs of (\(\beta \)). Therefore we can estimate hazard ratios and confidence intervals using maximum likelihood techniques. The only difference is that these estimates are based on the partial as opposed to the full likelihood. The partial likelihood is valid when there are no ties in the data set that is no two subjects have the same event time, if there are ties in the data set, the true partial log-likelihood function involves permutations and can be time-consuming to compute. Then, to study (Cox) model which have the following hazard function:
\[\lambda(t \setminus z) = \lambda_0(t) \exp(\beta Z) \quad \text{with} \quad T_1 < T_2 < ... < T_n \]

Survival models can be usefully viewed as ordinary regression
models in which the response variable is time. However, computing the likelihood function (needed for fitting parameters or making other kinds of inferences) is complicated by the censoring. So, the likelihood function can take the following:

\[
L(\beta, \lambda_0(t), t, z) = \prod_{i=1}^{n} \left(\lambda_0(t_i) \exp\left(\beta \frac{z_i}{t_i} \right) \right) \exp\left\{- \int_0^{t_i} \lambda_0(u) \exp\left(\beta \frac{z_i}{u} \right) du \right\}
\]

\[
\prod_{i=1}^{n} \frac{\exp(\beta z_i)}{\prod_{j=1}^{S_i} \lambda_0(t_j) \exp\left(\beta \frac{z_j}{t_j} \right) \prod_{j=1}^{S_i} S_0(t_j) \exp\left(\beta \frac{z_j}{t_j} \right)} \prod_{i=1}^{n} \frac{\exp(\beta z_i)}{\prod_{j=1}^{S_i} \lambda_0(t_j) \exp\left(\beta \frac{z_j}{t_j} \right) \prod_{j=1}^{S_i} S_0(t_j) \exp\left(\beta \frac{z_j}{t_j} \right)}
\]

Where \(S_0(t) = \exp \left(- \int_0^1 \lambda_0(u) du \right) \) The previous likelihood equations are special cases of (16). Equation (16) can be approximated by:

\[
L(\beta, t, z) = \prod_{i=1}^{n} \frac{\exp(\beta z_i)}{\prod_{j=1}^{S_i} \lambda_0(t_j) \exp\left(\beta \frac{z_j}{t_j} \right) \prod_{j=1}^{S_i} S_0(t_j) \exp\left(\beta \frac{z_j}{t_j} \right)}
\]

The maximum likelihood estimate of \((\beta) \) is \(\hat{\beta} \) and can be obtained as a solution to the system of the following equations:

\[
\frac{\partial \log L(\beta, t, z)}{\partial \beta_i} = \sum_{k=1}^{n} \left(Z_k \prod_{j=1}^{S_k} \frac{\exp(\beta z_j)}{\prod_{j=1}^{S_k} \lambda_0(t_j) \exp\left(\beta \frac{z_j}{t_j} \right) \prod_{j=1}^{S_k} S_0(t_j) \exp\left(\beta \frac{z_j}{t_j} \right)} \right)
\]

and similarly one can get:

\[
\sum_{k=1}^{n} \left(\prod_{j=1}^{S_k} \frac{\exp(\beta z_j)}{\prod_{j=1}^{S_k} \lambda_0(t_j) \exp\left(\beta \frac{z_j}{t_j} \right) \prod_{j=1}^{S_k} S_0(t_j) \exp\left(\beta \frac{z_j}{t_j} \right)} \right) \left(\prod_{j=1}^{S_k} \frac{\exp(\beta z_j)}{\prod_{j=1}^{S_k} \lambda_0(t_j) \exp\left(\beta \frac{z_j}{t_j} \right) \prod_{j=1}^{S_k} S_0(t_j) \exp\left(\beta \frac{z_j}{t_j} \right)} \right)
\]

... (17) Where \((j = 1, 2, 3 ... S)\)

9 Testing data for goodness:

There many formulas using to testing for goodness data as follows:

9.1 Log Rank Test:

The log rank test is a popular test to test the null hypothesis of no difference in survival between two or more independent groups. Survival curves are estimated for each group, considered separately, using the Kaplan-Meier method and compared statistically using the log rank test. The log rank test compares the observed number of events in each group to what would be expected if the null hypothesis were true (i.e. if the survival curves were identical). \(H_0\): The two survival curves are identical versus \(H_1\): The two survival curves are not identical with \((< 0.05)\). The log rank statistic is approximately distributed as a chi-square test statistic, as follows:

\[
X^2 = \sum_{i=1}^{n} \frac{(O_i - E_i)^2}{E_i} \quad (18)
\]

9.2 Score test statistic:

There are many statistical testing for proportional hazard assumption, one of them is the (Score test statistics) which used to test how effect the covariate vector for proportional hazard in time \((t)\), let the state of unit from life to death can putting in the following model:

\[
\lambda(t) = \lambda_0(t) \exp \left(\beta^T \mathbf{z} \right) \quad (19)
\]

for each time with sequencings \((I)\), therefore we can give the test hypothesis as follows:

\[
H_0: \beta_1 = \beta_2 = \cdots = \beta_p = 0 \quad \text{Versus} \quad H_1: \text{at least one of them not equal to zero}
\]

With following test statistics:

\[
S = \mathbf{U}^T \mathbf{V}^{-1} \mathbf{U} \quad (20)
\]

Where \(\{U\}\) represent the vector of derivatives of log l likelihood under \(H_0\) and partial likelihood for vector \(\beta\) and

\[
(V) = - \left\{ \frac{\partial^2 \log l p l(\beta, t, z)}{\partial \beta_i \partial \beta_j} \right\}.
\]

So, the score test close to chi- square distribution with \((p)\) degree of freedom.

9.3 Wald Test:

Another common way to test for the individual hazard ratio is based on Wald test which is testing whether the individual hazard coefficient is zero or not with \(H_0: \beta_j = 0\).

The Wald test \((W_j) = \left\{ \frac{\beta_j}{SE(\beta_j)} \right\}^2 \quad (21)\)

10 Experimental Part:

10.1 Description data:

In this research we use a real data of (Nankelly - hospital) in Arbeil city- Iraq, we have (72) patients with Leukemia disease from (1-9-2013) to (31-12-2013). We study the following variables:

\(T\): Survival Time

\(Z_1\): The age of patient in first visit hospital

\(Z_2\): The gender of patient takes (1 for male and 2 for female)

\(Z_3\): Disease type takes follow:

1- Acute myeloid leukemia /AML

2- Acute Lymphocytic leukemia / ALL

3- Chronic myelogenous leukemia/ CML

4- Chronic Lymphocytic leukemia/ CLL

\(Z_4\): Treatment type takes follow:

1- Biological Treatment

2- Chemical Treatment

\(Z_5\): Address type takes follow:

1- Towner patient

2- Out of the town

\(Z_6\): State of patient Anemia takes follows:

1- Patient with Anemia

2- Patient without Anemia

\(Z_7\): State of Censored takes follow:

0- Patient with Censored

1- Patient exit
After analysis the data of patients in each four month of period study, we get the following results:

Table 1: No. patients, No. of death and No. of censored in each four month

<table>
<thead>
<tr>
<th>Month</th>
<th>No. patients</th>
<th>No. death</th>
<th>% death</th>
<th>No. of censored</th>
<th>% censored</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>25</td>
<td>6</td>
<td>24.0</td>
<td>19</td>
<td>74.0</td>
</tr>
<tr>
<td>October</td>
<td>14</td>
<td>2</td>
<td>14.29</td>
<td>12</td>
<td>85.71</td>
</tr>
<tr>
<td>November</td>
<td>14</td>
<td>1</td>
<td>7.1</td>
<td>13</td>
<td>92.9</td>
</tr>
<tr>
<td>December</td>
<td>20</td>
<td>2</td>
<td>10.0</td>
<td>18</td>
<td>90.0</td>
</tr>
<tr>
<td>Total</td>
<td>73</td>
<td>11</td>
<td>18.4</td>
<td>62</td>
<td>81.6</td>
</tr>
</tbody>
</table>

Table 2: The age classes in years according to state of survival

<table>
<thead>
<tr>
<th>Classes of patients</th>
<th>No. death</th>
<th>No. of censored</th>
<th>Total</th>
<th>% censored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 20</td>
<td>3</td>
<td>27</td>
<td>30</td>
<td>42.47</td>
</tr>
<tr>
<td>20 – 40</td>
<td>4</td>
<td>16</td>
<td>20</td>
<td>26.02</td>
</tr>
<tr>
<td>More than 40</td>
<td>4</td>
<td>19</td>
<td>23</td>
<td>31.51</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>62</td>
<td>73</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 3: The class of gender according to state of survival

<table>
<thead>
<tr>
<th>The gender patients</th>
<th>No. death</th>
<th>No. of censored</th>
<th>Total</th>
<th>% censored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>6</td>
<td>21</td>
<td>27</td>
<td>37.0</td>
</tr>
<tr>
<td>Female</td>
<td>5</td>
<td>41</td>
<td>46</td>
<td>63.0</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>62</td>
<td>73</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 4: Types classes of disease according to patients and state of survival

<table>
<thead>
<tr>
<th>Types of disease</th>
<th>No. death</th>
<th>No. of censored</th>
<th>Total</th>
<th>% censored</th>
</tr>
</thead>
<tbody>
<tr>
<td>AML</td>
<td>7</td>
<td>25</td>
<td>32</td>
<td>43.8</td>
</tr>
<tr>
<td>ALL</td>
<td>3</td>
<td>27</td>
<td>30</td>
<td>41.1</td>
</tr>
<tr>
<td>CML</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>8.2</td>
</tr>
<tr>
<td>CLL</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>6.9</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>62</td>
<td>73</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 5: Types of treatment according to the patients and state of survival

<table>
<thead>
<tr>
<th>Types of treatment</th>
<th>No. death</th>
<th>No. of censored</th>
<th>Total</th>
<th>% censored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological</td>
<td>3</td>
<td>43</td>
<td>46</td>
<td>63.0</td>
</tr>
<tr>
<td>Chemical</td>
<td>8</td>
<td>19</td>
<td>27</td>
<td>37.0</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>62</td>
<td>73</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 6: Types of address according to the patients and state of survival

<table>
<thead>
<tr>
<th>Types of address</th>
<th>No. death</th>
<th>No. of censored</th>
<th>Total</th>
<th>% censored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Town</td>
<td>1</td>
<td>24</td>
<td>25</td>
<td>34.25</td>
</tr>
<tr>
<td>Out of town</td>
<td>10</td>
<td>38</td>
<td>48</td>
<td>65.75</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>62</td>
<td>73</td>
<td>100.0</td>
</tr>
</tbody>
</table>

10.2. Testing and statistical data Analysis:
A- Testing data: In this statement we go to test the data of patients before applied cox procedure, we find the following results:

Table 7: The results testing of data patients

<table>
<thead>
<tr>
<th>Types of distribution</th>
<th>X² table values</th>
<th>d.f.</th>
<th>P- value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential</td>
<td>40.4682</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>weibull</td>
<td>26.7805</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Lognormal</td>
<td>42.8663</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

According to results of table (7), the data of patients have no specific distribution of survival time.

B Log Rank Test:

1- Kaplan-Meier method with treatment variable: Using Kaplan- Meier method to test there is no difference in survival curves between two independent treatments as in following figure:

Figure (1): Kaplan-Meier test with treatment variable

C Statistic Score Test:
According to equation (27) for Statistic Score Test under the hypothesis:

$$H_0: \gamma_1 = \gamma_2 = \cdots = \gamma_p = 0 \text{ Versus}$$
$$H_1: \text{at least one of them not equal to zero}$$

We get the following result:

Table 8: Types of treatment according to the patients and state of survival

<table>
<thead>
<tr>
<th>Test</th>
<th>Chi-square</th>
<th>d.f.</th>
<th>Table- value</th>
<th>sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>S- statistic</td>
<td>11.4642</td>
<td>6</td>
<td>12.59</td>
<td>0.0824</td>
</tr>
</tbody>
</table>

Score test showing that model is not significant as same as showing in the Kaplan-Meier test.
10.3 Estimation Cox regression parameters:
After gets proportional Hazard assumption, now we can find the estimation parameters \((Z_1, Z_2, Z_3, Z_4, Z_5, Z_6)\) with survival time \((T)\) as in equation (10) as follows:

Table 8: The results of Cox-Regression model estimation

<table>
<thead>
<tr>
<th>Variables</th>
<th>β</th>
<th>S.E.</th>
<th>Wald</th>
<th>d.f.</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.000</td>
<td>0.007</td>
<td>0.001</td>
<td>1</td>
<td>0.981</td>
</tr>
<tr>
<td>Gender</td>
<td>0.118</td>
<td>0.311</td>
<td>0.145</td>
<td>1</td>
<td>0.703</td>
</tr>
<tr>
<td>Disease</td>
<td>0.123</td>
<td>0.183</td>
<td>0.452</td>
<td>1</td>
<td>0.501</td>
</tr>
<tr>
<td>Treatment</td>
<td>-0.937</td>
<td>0.314</td>
<td>8.880</td>
<td>1</td>
<td>0.003</td>
</tr>
<tr>
<td>Address</td>
<td>0.331</td>
<td>0.273</td>
<td>1.469</td>
<td>1</td>
<td>0.226</td>
</tr>
<tr>
<td>Anemia</td>
<td>0.612</td>
<td>0.272</td>
<td>5.045</td>
<td>1</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Therefore we get only two significant variables with Cox model as follows:

\[Y = \lambda_0(t) \exp(-0.967Z_4 + 0.622Z_6) \]

11. Conclusion

1- We find from data analysis that most ratio of death (%54.54) in the first month of censored (September) and most death that patients of age under (20 years) is (%42.46).

2- Most death is the patients of female (% 63) and most common disease is (Acute myeloid leukemia) with ratio (%43.8) and has most ratio of death (% 63.63).

3- From the results of Cox-reg. model we have only two sig. variables (Treatment and Anemia).

4- Most risk at survival time at (0- 20) days with probability survival (0.0039) and we find that the risk of death is increasing with time, that is mean the disease still continuo.

12. References

