Cyclostationary Based Frequency Offset Estimation For Transmitting Different Data Inputs

B Siva Kumar Reddy

Abstract: Although the many technologies are evolved during the past few decades, the spectrum utilization is not yet utilized efficiently. Therefore, it is necessary to focus on technologies which will be helpful for using spectrum efficiently such as called as spectrum sensing technologies. In the literature, different spectrum sensing methods are proposed in which the most efficient method, Cyclostationary method is focused more in this paper. When a signal is transmitted over a wireless channel, the signal will be disturbed due to the channel noise. This channel noise may lead to phase, amplitude and frequency offset. However, in this paper, the frequency offset estimation of Cyclostationary detection in Cognitive radio network for number of CR users is analyzed and remaining offsets are assumed as null.

Index Terms: Cognitive radio, Cyclostationary method, Frequency offset, Spectrum sensing.

1. INTRODUCTION
Among the range detecting calculations proposed in the writing [1]–[4], we consider in this paper highlight based indicators. Highlight indicators adventure sign's cyclostationality by identifying spectrum correlation crests in the SCF, which is scanty in both cyclic and precise recurrence areas. They are additionally exceptionally vigorous to commotion vulnerability which makes other finders, for example, vitality indicators come up short. Likewise, include finders can separate among sign of intrigue (SOIs), meddling sign, and commotion by utilizing the SOI's cyclostationary unearthy connection highlights [5]. Range detecting is the undertaking of acquiring mindfulness about the range use and presence of essential clients in a geological territory. This mindfulness can be acquired by utilizing geolocation and database, by utilizing signals, or by neighborhood range detecting at subjective radios [6]–[9]. It likewise includes figuring out what kinds of sign are involving the range including the tweak, waveform, transmission capacity, bearer recurrence, and so on. Be that as it may, this requires all the more dominant sign examination methods with extra computational unpredictability. There is a reduction in the likelihood of identification at whatever point the divert is in a profound blur. This can be eased by abusing spatial decent variety either using helpful range detecting [10] or, if accessible, the utilization of numerous receiving wires. Thus, range detecting calculations misusing different radio wires have gotten significant intrigue [11] - [13]. The radio space with the presented measurements can be characterized as "a hypothetical hyperspace involved by radio sign, which has measurements of area, point of entry, recurrence, time, and potentially others" [14], [15]. This hyperspace is called electrospace, transmission hyperspace, radio range space, or basically range space by different creators, and it tends to be utilized to portray how the radio condition can be shared among numerous (essential as well as optional) frameworks [14]–[17]. Orthogonal frequency division multiplexing (OFDM) transmission is getting expanding consideration as of late due to its power to frequency-selective fading and its subcarrierwise versatility. Then again, multiple input multiple output (MIMO) frameworks pull in impressive enthusiasm due to the higher limit and spectral productivity that they can give in examination single-input single-output (SISO) frameworks. As needs be, MIMO-OFDM has developed as a solid possibility for beyond third generation (B3G) versatile wideband communication [18]. It is notable that SISO-OFDM is profoundly touchy to carrier frequency offset (CFO), and precise estimation and compensation of CFO is significant [19]. Various methodologies have managed CFO estimation in a SISO-OFDM arrangement [20]–[25]. As per whether the CFO estimators use preparing groupings or not, they can be named dazzle ones [20] [21] and preparing based ones [19], [23]–[25]. Like SISO-OFDM, MIMO-OFDM is additionally touchy to CFO. In addition, for MIMO-OFDM, there exists multi-antenna interference (MAI) between the got sign from various transmit reception apparatuses.

2 SPECTRUM SENSING TECHNIQUES
Cognitive radio devices have the ability to acquire knowledge of the environment through their context awareness, such that, they obtain information by sensing variables related to the channel characteristics, interference, power, and spectrum accessibility among others. Signal processing techniques are proposed in the literature [26] - [29] that use the advantage of man-made signals which present periodicity in their statistics. First of all we need primary user waveform on which we can apply different spectrum sensing techniques.

2.1 Matched filter
Matched filter improves the signal to noise (SNR) of received signals which is a major advantage to detect signals [30]. However, this method requires an efficient demodulation method of a primary user. This method requires prior information (may be modulation type, coding, packet format etc) about the primary user signal at both MAC and PHY layers. Matched filter method uses coherent detector to demodulate the signals by mitigating synchronization errors such as timing and frequency offsets. Various receiver algorithms are to be employed to achieve perfect demodulation and it may consume pore power which is a major disadvantage of matched filter method.

2.2 Cyclostationary based detection (CBD)
Figure 1 shows the implementation of a spectrum correlation function for cyclostationary feature detection, which is

• B Siva Kumar Reddy is currently working as an Associate Professor, Dept. of ECE, CMR Engineering College, Kandlakoya, Telangana, India-501401, Email: bsivakumar100@gmail.com
designed as augmentation of the energy detector with a single correlator block [31]. The major advantages CBD method are it provides constant false alarm rate (CFAR) even with inaccurate information of noise variance and provides improved performance even at very low SNRs [32], [33].

III. RESULTS AND DISCUSSION

Figure 2 shows the obtained results for Cyclostationary based frequency offset estimation while transmitting a single character ‘R’ when the frequency is set to (a) 100 Hz (b) 200 Hz (c) 500 Hz and the peaks are observed at +200 & -200, +400 & -400 and +1000 & -1000, respectively. Figure 3 shows the obtained results for Cyclostationary based frequency offset estimation while transmitting a single word ‘RESEARCH’ when the frequency is set to (a) 100 Hz (b) 200 Hz (c) 500 Hz and the peaks are observed at +200 & -200, +400 & -400 and +1000 & -1000, respectively. Figure 4 shows the obtained results for Cyclostationary based frequency offset estimation while transmitting a statement ‘RESEARCH IS CREATING A NEW KNOWLEDGE’ when the frequency is set to (a) 100 Hz (b) 200 Hz (c) 500 Hz and the peaks are observed at +200 & -200, +400 & -400 and +1000 & -1000, respectively.
REFERENCES

division multiplexing frequency offset correction,” IEEE Trans.
[20] J. van de Beek, M. Sandell, and P. O. Borjesson, “ML
estimation of time and frequency offset in OFDM
offset estimator for OFDM applications,” IEEE
[23] D. Huang and K. B. Letaief, “Carrier frequency offset
estimation for OFDM systems using null subcarriers,”
IEEE Trans. Commun., vol. 54, no. 5, pp. 813–823,
May 2006.
[24] D Huang, KB Letaief “Enhanced carrier frequency
offset estimation for OFDM using channel side
information,” IEEE Trans. Wireless Commun., vol. 5,
and training sequence design for MIMO OFDM." IEEE
transactions on wireless communications 7.4 (2008):
1244-1254.
[26] Kaur, Navpreet, I. KaurAulakh, and Renu Vig.
Analysis of Spread Spectrum Techniques in Cognitive
Radio Networks. International Journal of Applied
[27] Quyen, Nguyen Xuan, et al. Chaotic direct-sequence
spread-spectrum with variable symbol period: A
technique for enhancing physical layer security.
two-stage differential acquisition for weak direct
sequence spread spectrum signal. IET
Communications 11.6 (2017): 878-886.
Spectrum-Based PWM Strategy for Harmonic
Reduction and Communication. IEEE Transac-
tions on Power Electronics 32.6 (2017): 4455-4465.
parallel combinatory mul-ticarrier Frequency-Hopping
Spread Spectrum over shallow underwater acoustic
[31] D. Cabric, S. M. Mishra, and R. W.
Brodersen, “Implementation issues in spectrum
sensing for cognitive radio,´ I Proc. Asilomar Conf. on
2004
estimation and equalization in OFDM receiver for
WiMAX with Rayleigh distribution." 2013 International
Conference on Advanced Electronic Systems (ICAES).
IEEE, 2013.
[33] Shah, Syed Muslim, Raza Samar, and Muhammad
Asif Zahoor Raja. "Fractional-order algorithms for
tracking Rayleigh fading channels." Nonlinear