
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 11, NOVEMBER 2019 ISSN 2277-8616

3767
IJSTR©2019

www.ijstr.org

Formal Specification Language Jpiaspectz:
Looking For A Complete JPI Software

Development Process

Cristian Vidal-Silva, Claudia Jiménez, Erika Madariaga, Luis Urzúa

Abstract: Aspect-Oriented Software Development AOSD solves modularity issues in the Object-Oriented Software Development OOSD approach.
AOSD adds a few more details concerning the dependency between related modules. Join Point Interface JPI represents an AOSD methodology to
solve those AOSD issues by the definition of interfaces in the middle of advisable artifacts and aspects. JPI permits develop ing software modules without

crosscutting concerns. Looking for a JPI software development approach, this article proposes and exemplifies the use of JPIAspectZ, an extension of
the formal aspect-oriented language AspectZ for the requirement specification of JPI solutions. Mainly, JPIAspectZ looks for a consistent JPI s oftware
development process. Defining join point interfaces represents a primary JPI component for explicitly associating aspects and advised modules. Classes

are no longer oblivious of possible interaction with aspects, and effectiveness of aspects no more depend on signatures of advisable modules
components for the use of JPI instances. JPIAspectZ fully supports these JPI principles. As JPI application examples, this ar ticle shows the formal
requirements specification, structural model, and JPI code for a typical aspect-oriented application.

Index Terms: Aspects, Concerns, Formal Modeling, Join Point Interface, JPI, JPIAspectZ, Modularity.
—————————— ——————————

1. INTRODUCTION
Aspect-Oriented Software Development (AOSD) permits
modularizing crosscutting concerns in Object-Oriented
Software Development (OOSD) stages [1]. Because AOSD
was born at the Object-Oriented (OO) programming stage, to
reach a complete transparency of concepts and design in the
AOSD process seems a complicated task. Looking that
transparency in the AOSD process, different proposals of
modeling language extensions already exist to support AOSD
such as aspect-oriented UML use case diagrams [2] and
aspect-oriented UML class diagram [3]. Specifically, Wimmer
et al. [4] present a survey of aspect-oriented UML languages.
Nevertheless, only a few articles about formal aspect-oriented
languages for requirement specification proposals exist so far;
for example, Yu et al. [5]; Vidal et al. [6] describe and apply
AspectZ, the works of Vidal et al. [7-8] describe OOAspectZ,
and Mostefaoui and Vachon [9] illustrates the use of an AO
Alloy version.Besides, Bodden et al. [10] indicate that, in
traditional AOSD solutions, a double-dependency between
base modules and aspects exists. To solve this issue, the
works of [10-12] propose the use of Join Point Interface (JPI)
instances between classes and aspects. Thus, with the
purpose of obtaining JPI solutions and getting transparency of
concepts in stages of the AOSD-JPI process, this article
proposes and applies JPIAspectZ, an extension of OOAspectZ
[7-8] for requirements specification of JPI software
applications.

This paper structures is as follows: Section 2 signals main
properties of Aspect-Oriented Programming (AOP) paradigm
and its JPI extension. Section 3 describes the main properties
of Z, Object-Z, and Aspect-Z formal languages to introduce
and describe the main properties of JPIAspectZ. Section 4
presents a few applications of the JPIAspectZ formal
requirement specification language over a classic aspect-
oriented case study and a JPI case study. Section 5 evaluates
JPIAspectZ consistency. Conclusions finally concludes and
presents future work ideas.

2 ASPECT-ORIENTED PROGRAMMING AND JPI
Kiczales et al. [1] proposed Aspect-Oriented Programming
(AOP) to modularize crosscutting concerns as aspects in OOP.
Aspects advise classes like events, that is, aspects introduce
behavior and structural elements such as methods and
attributes into classes. Nevertheless, as Bodden et al. [10]
indicate, AOP presents implicit dependencies between advised
classes and aspects. First, aspects define Pointcut Rules
(PCs) for advisable classes’ behavior; and, as a result,
instances of those classes are entirely oblivious of possible
changes in their components, methods, and attributes.
Second, aspects can be ineffective or spurious for signature
changes on advised methods of target classes. Such as [10-
11] mention, the last issue is known as the fragile pointcut
problem. Likewise, Bodden et al. [10] also indicate that
traditional AOP like Aspect-J solutions compromise the
independent development of base code and aspect modules
since developers of base code, and aspects must obtain a
global knowledge about all program components and their
associations, that is, they must know all the details about
aspects, classes, and their relations.To isolate crosscutting
concerns and get modular AOP programs without the
mentioned implicit dependencies, the work of Bodden et al.
[10] describe the JPI programming methodology. JPI
introduces the idea of join point interface on classic AOP. Like
classic AOP [10-11], for JPI applications, aspects represent
crosscutting functionalities, but without PCs. Aspects in JPI
only present their implementation of join point interfaces.
Besides, in JPI, non-oblivious advised classes exhibit explicit
join point interfaces, that is, classes know about potential

————————————————
 Cristian Vidal-Silva, professor at Departamento de Administración,

Facultad de Economía y Negocios, Universidad Católica del Norte,
Antofagasta, Chile. E-mail: cristian.vidal@ucn.cl

 Claudia Jiménez, director of Ingeniería Civil Informática, Facultad de
Ingeniería y Negocios, Universidad Viña del Mar, Viña del Mar,

Chile. E-mail: cjimenez@uvm.cl

 Erika Madariaga, director of Ingeniería Informática, Facultad de

Ingeniería, Ciencia y Tecnología, Universidad Bernardo O’Higgins,
Santiago, Chile. E-mail: erika.madariaga@ubo,cl

 Luis Urzúz, profesor at Escuela de Kinesiología, Facultad de Salud,

Universidad Santo Tomás, Talca, Chile. E-mail:
lurzua@santotomas.c

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 11, NOVEMBER 2019 ISSN 2277-8616

3768
IJSTR©2019

www.ijstr.org

change s on their methods. Figures 1 and 2 [10] illustrate
dependencies between aspects and classes in classic AOP
and JPI applications, respectively.

3 JPIASPECTZ FUNDAMENT
Z [13] and Object-Z [14] are formal languages for software
requirements specification. Specifically, Z is the classic formal
specification language without the direct support of object-
oriented abstractions like classes and inheritance, and Object-
Z is an extension of the famous Z to support OOSD principles.
Likewise, AspectZ [5-6] and OOAspectZ [7-8] represent Z
extensions for requirements specification of AOP applications
and their integration with Z and Object-Z, respectively. Figures
3 and 4 show the schemas specification for AspectZ and
OOAspectZ. Considering JPI ideas, this article describes
JPIAspectZ, an OOAspectZ extension to model JPI
applications and its integration with Object-Z. The next lines
present the main elements of a JPIAspectZ formal
specification.

 Base Modules: Unlike AspectZ and OOAspectZ which
present oblivious base modules, JPIAspectZ base modules
are specified as Object-Z class modules which include an
exhibits rule con-cerning advisable operations of advised
class instances. Figure 5 shows the structure of a
JPIAspectZ class schema, JPI schema, and Aspect schema.

 Since the declaration part of an Object-Z operation schema
permits defining operation parameters, when looking for a
transparency of concepts and design for JPI applications,
an exhibits rule is definable in two sections: first, exhibits
JPI for the join point interface instances which the class
exhibits, and second, a set of conditions for the join
point event. So far, JPIAspectZ considers basic AOP and JPI
conditions for dynamic and static crosscuts, that is, call
operation; execution operation; logic connectors &&, ||, !;
args(arguments list) to identify the arguments of catchable
methods; this(object) to determine the object on which the
advisable method operates; and target(object) to identify the
object owner of the advisable method.

 Join Point Interface: In JPIAspectZ, operation schemas
starting with the JPI initials represent join point interfaces
(JPI schemas) for a system specification. For example,

Fig. 1. Associations of base and aspects modules in classic
AOP.

Fig. 2. Associations of base and aspect modules with a join
point interface in JPI.

Fig. 3. AspectZ specification schema.

Fig. 4. OOAspectZ specification schema.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 11, NOVEMBER 2019 ISSN 2277-8616

3769
IJSTR©2019

www.ijstr.org

Figure 8 shows JPIUpdateX and JPIUpdateY. Furthermore,
JPI schemas only present a declaration section to indicate
their list of parameters.

 Aspects: JPIAspectZ Aspects-schemas are like Object-Z
class diagrams labeled with the phrase aspect. Aspect-
schemas include state schemas to define attributes and
invariants and operation schemas for the schema advice
operations. As a distinction regarding class schemas,
Aspect-schemas can indicate the occurrence time for
operations (before, after, and around) to specify kind of
advice. Semantically, aspect-schemas advise operation
schemas, usually for inserting new methods in the advised
classes, for adding behavior at the beginning, around, and
end on advised operations schemas.

 From advised method schemas and associated aspect-
schemas, JPIAspectZ permits obtaining woven schemas. It
is relevant to highlight the modular evolution from AspectZ
(Figure 3 [5]), OOAspectZ (Figure 4 [7-8]), and JPIAspectZ
(Figure 5) schemas respectively. Note that for the first two,
base schema, Z operation schema, and Object-Z class
schema, an aspect operates over oblivious advised
elements. Nevertheless, for the JPI philosophy, in
JPIAspectZ, aspects, and classes know about interfaces to
implement and exhibit, respectively.

3 APPLICATION EXAMPLES
The Painting System [7], is a classic AO example that presents
classes Point and Line which are Shapes, and each Line
instance is composed of a few Point instances. The main idea
is to illustrate the updating screen process as an external
behavior. Figure 7 illustrates a JPI UML class diagram that
includes main JPI elements for the Painting System. Clearly,
for exhibits and implements rules, classes are not more
oblivious and aspect not directly refer to classes: classes
exhibit JPI and aspects implement those interfaces. We
recommend to review [15] for more details about JPI.

As a JPI example, [10] [12] show a Shopping session 'running
example' of an e-commerce system (ShoppingSession
system). That example presents a join point interface
checkingOut, a class ShoppingSession that exhibits
checkingOut and an aspect Discount that implements
checkingOut for around kind of advice.

}

Fig. 5. JPIAspectZ class schema.

Fig. 6. JPIAspectZ JPI and Aspect schemas.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 11, NOVEMBER 2019 ISSN 2277-8616

3770
IJSTR©2019

www.ijstr.org

4 APPLICATION RESULTS
Figures 8, 9, 10, and 11 present the JPIAspectZ specification
for the Painting system: a Shape interface; Point and Line
classes; the JPI instances JPIUpdateX, JPIUpdateY, and
JPIMove; and aspect Aspect1Painting. Point and Line classes
exhibit JPI instances, class Point exhibit JPIUpdateX and
JPIUpdateY, and class Line exhibit JPIMove; whereas
Aspect1Painting implements these JPI instances. A
consistency exists among Figures 7 (JPI class diagram) and
Figures 8, 9, 10, and 11 (JPIAspectZ specification) for the
modeling of the Pinting system.

Figure 9 presents a JPI programming code and Figure 11
shows a JPIAspectZ formal specification for the
ShoppingSession system. Again, a clear consistency exists
between these two figures. Figure 12 presents the JPI code for
the same application to demonstrate a full consistency
between the JPI model and implementation code.

Fig. 7. Painting system JPI UML class diagram.

Fig. 8. JPIAspectZ formal specification for the

Painting system: Interface Shape.

Fig. 9. JPIAspectZ formal specification for the

Painting system: Advised class Point.

Fig. 10. JPIAspectZ formal specification for the

Painting system: Advised class Line.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 11, NOVEMBER 2019 ISSN 2277-8616

3771
IJSTR©2019

www.ijstr.org

REFERENCES
[1] G. Kiczales, ―Aspect-oriented programming,‖ ACM

Comput. Surv., vol. 28, no. 4es, Dec. 1996. [Online].
Available:
http://doi.acm.org/10.1145/242224.242420

[2] I. Jacobson and P.-W. Ng, Aspect-Oriented Software
Development with Use Cases (Addison-Wesley Object
Technology Series). AddisonWesley Professional, 2004.

[3] F. Wedyan, S. Ghosh, and L. R. Vijayasarathy, ―An
approach and tool for measurement of state variable
based data-flow test coverage for aspect-oriented
programs,‖ Inf. Softw. Technol., vol. 59, no. C, pp. 233–
254, Mar. 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2014.11.008

[4] M. Wimmer, A. Schauerhuber, G. Kappel, W.
Retschitzegger, W. Schwinger, and E. Kapsammer, ―A
survey on umlbased aspect-oriented design modeling,‖
ACM Comput. Surv., vol. 43, no. 4, pp. 28:1–28:33, Oct.
2011. [Online]. Available:
http://doi.acm.org/10.1145/1978802.1978807

[5] Y. Huiqun, L. Dongmei, Y. Li, and H. Xudong, ―Formal
aspect-oriented modeling and analysis by Aspect-Z,‖ pp.
169–174, 2005.

[6] C. Vidal, R. Saens, C. Del R´ıo, and R. Villarroel, ―Aspect-
oriented modeling: Applying aspect-oriented UML use
cases and extending aspect-z,‖ Computing and
Informatics, vol. 32, no. 3, pp. 573–593, 2013.

[7] C. Vidal-Silva, R. Saens, C. Del Río, and R. Villarroel,
―OOAspectZ y diagramas de clase orientados a los
aspectos para la modelacion´ orientada a aspectos
(MSOA),‖ Ingeniería e Investigación, vol. 33, no. 3, pp.
66–71, 2013.

[8] C. Vidal, R. Villarroel, R. Schmal, R. Saens, T. Tigero, and
C. Del R´ıo, ―Aspect-Oriented Formal Modeling: (AspectZ
+ Object-Z) = OOAspectZ,‖ Computing and Informatics,
vol. 34, no. 5, pp. 996–1016, 2015. [Online]. Available:
http://www.cai.sk/ojs/index.php/cai/article/view/1380

[9] F. Mostefaoui and J. Vachon, ―Verification of aspect-uml
models using alloy,‖ in Proceedings of the 10th
International Workshop on Aspect-oriented Modeling, ser.
AOM ’07. New York, NY, USA: ACM, 2007, pp. 41–48.
[Online]. Available:
http://doi.acm.org/10.1145/1229375.1229382

[10] E. Bodden, E. Tanter, and M. Inostroza, ―Join point
interfaces for safe and flexible decoupling of aspects,‖
ACM Trans. Softw. Eng. Methodol., vol. 23, no. 1, pp.
7:1–7:41, 2014.

[11] E. Bodden, ―Closure joinpoints: Block joinpoints without
surprises,‖ in Proceedings of the Tenth International
Conference on Aspectoriented Software Development,
ser. AOSD ’11. New York, NY, USA: ACM, 2011, pp. 117–
128. [Online]. Available:
http://doi.acm.org/10.1145/1960275.1960291

[12] M. Inostroza, E. Tanter, and E. Bodden, ―Join point
interfaces for modular reasoning in aspect-oriented
programs,‖ in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on
Foundations of Software Engineering, ser. ESEC/FSE
’11. New York, NY, USA: ACM, 2011, pp. 508–511.
[Online]. Available:
http://doi.acm.org/10.1145/2025113.2025205

Fig. 11. JPIAspectZ formal specification for the
Painting system: Join point interfaces and Aspects.

Fig. 12. JPI Java code for the Painiting system.

http://www.cai.sk/ojs/index.php/cai/article/view/1380
http://doi.acm.org/10.1145/1229375.1229382
http://doi.acm.org/10.1145/1960275.1960291
http://doi.acm.org/10.1145/2025113.2025205

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 11, NOVEMBER 2019 ISSN 2277-8616

3772
IJSTR©2019

www.ijstr.org

[13] J. Woodcock and J. Davies, Using Z: Specification,
Refinement, and Proof. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1996.

[14] G. Smith, The Object-Z Specification Language. Norwell,
MA, USA: Kluwer Academic Publishers, 2000.

[15] C. Vidal-Silva and R. Villarroel, ―JPI UML: UML class and
sequence diagrams proposal for aspect-oriented JPI
applications,‖ in 33rd International Conference of the
Chilean Computer Science Society, SCCC 2014, Talca,
Maule, Chile, November 8-14, 2014, 2014, pp. 120–123.

[16] S. Apel, D. Batory, C. Kstner, and G. Saake, Feature-
Oriented Software Product Lines: Concepts and
Implementation, 1st ed. Springer Publishing Company,
Incorporated, 2016.

