Inverse Majority Neighborhood Number For Cartesian Product Of Graphs

T. Dhivya, I. Paulraj Jayasimman, J. Joseline Manora

Abstract: If S_M be the majority set of G if $V-S_M$ contains a majority neighborhood set $S_M^{'}$ of G then $S_M^{'}$ be the inverse majority neighborhood set of G with respect to S_M . In this article the inverse majority neighborhood number $n_M^{-1}(G)$ of G are determined for cartesian product of graphs.

Index Terms: Majority Neighborhood Set, Majority Neighborhood Number, Inverse Majority Neighborhood Number.

1 INTRODUCTION

The concept of majority neighborhood set has been studied by Prof.V.Swaminathan and J. Joselin Manora[9]. The neighborhood parameters are studied in the articles[11,][15], [16], [17],[21],[22]. Further inverse majority neighborhood set introduced by I.Paulraj Jayasimman[19],[20]. A set S of vertices in a graph G is a neighborhood set if $G = \bigcup \langle N[v] \rangle$

,where $\langle N[v] \rangle$ is the subgraph of G induced by v and all vertices adjacent to v. The neighborhood number $n_0(G)$ of G is the minimum number of vertices in a neighborhood set of G [7]. A set SÍ V(G) is called a majority neighborhood set if

$$G_M = \bigcup_{v \mid S} \left\langle N[v] \right\rangle \ \text{contains at least} \ \ \overset{\text{\'ep}}{\underset{\text{\column}}{\stackrel{\circ}{\text{\chi}}}} \ \text{vertices and at least}$$

 $\frac{6}{2}$ u edges. A majority set S is called a minimal majority $\frac{6}{2}$ u

neighborhood set if no proper subset of S is a majority neighborhood set. The minimum cardinality of a majority neighborhood set is called the majority neighborhood number of G and is denoted by $N_M(G)$ [9]. If S_M be the majority neighborhood set of G. If V- S_M

contains a majority neighborhood set S_M of G, then S_M is called an inverse majority neighborhood set of G with respect to S_M . The inverse majority neighborhood number $n_M^{-1}(G)$ of G is the minimum cardinality of an inverse majority neighborhood set of G [19].Cartesian product of graph operation has play vital role in chemical graph and network structure.

2 INVERSE MAJORITY NEIGHBORHOOD NUMBER OF CARTESIAN PRODUCT OF GRAPHS

Theorem 2.1. For $G=P_2\times P_m$ with $m\geq 2$ then $n_m^{-1}(G)=\left\lceil\frac{m}{2}\right\rceil$

Proof. Let
$$G = P_2 \times P_m$$
 with $m \ge 2$ and the vertex set $V(G) = \{v_{11}, v_{12}, ..., v_{1r}, v_{21}, v_{21}, ..., v_{2s}\}$. $d(v_{1r}) = d(v_{2s}) = 2$ $|V(G)| = p = 2m$ and $|E(G)| = q = 2(m-1) + m$.

Claim: $S_{\scriptscriptstyle M}^{\dot{}}$ be the inverse majority neighborhood set with cardinality $\left\lceil \frac{m}{2} \right\rceil$

Case(i). m=even. Let $S_{M}^{'}$ be the inverse majority neighborhood set

$$\begin{split} & \text{then } S_{M}^{\cdot} = \{v_{13}, v_{15}, \dots, v_{1r-1}, v_{21}\} \; \left|S_{M}^{\cdot}\right| = \left\lfloor \left(\frac{m-1}{2}\right)\right\rfloor + 1 \Longrightarrow \\ & \left|\left\langle N[S_{M}^{\cdot}]\right\rangle\right| = 3 \left(\left\lfloor \frac{m-1}{2}\right\rfloor\right) + 2 \ge \left\lceil \frac{2(m-1)+m}{2}\right\rceil = \left\lceil \frac{3m-2}{2}\right\rceil = \left\lceil \frac{q}{2}\right\rceil. \\ & \left|N[S_{M}^{\cdot}]\right| = \left\lceil \frac{3m}{2}\right\rceil > \left\lceil \frac{p}{2}\right\rceil = \left\lceil \frac{2m}{2}\right\rceil = m \text{ .Therefore} \\ & \left|S_{M}^{\cdot}\right| \le n_{m}^{-1}(G) \text{ .Suppose } S_{M}^{\cdot} = \{v_{13}, v_{15}, \dots, v_{1r-1}\} \text{ then} \\ & \left|\left\langle N[S_{M}^{\cdot}]\right\rangle\right| = \left\lceil \frac{3m}{2}\right\rceil - 3 \le \left\lceil \frac{2(m-1)+1}{2}\right\rceil = \left\lceil \frac{2m-2+m}{2}\right\rceil \\ & \le \left\lceil \frac{q}{2}\right\rceil \cdot \left|N[S_{M}^{\cdot}]\right| = \left\lceil \frac{3m}{2}\right\rceil - 2 < \left\lceil \frac{p}{2}\right\rceil \text{ .Therefore } \left|S_{M}^{\cdot}\right| \ge n_{m}^{-1}(G) \text{ .} \\ & \text{Hence } \left|S_{M}^{\cdot}\right| = n_{m}^{-1}(G) \end{split}$$

Case(ii).If m = odd

T. Dhivya, Assistant professor, Department of Mathematics, AMET Deemed to be University, Chennai.

[•] Email address: dhivya.t@ametuniv.ac.in

I. Paulraj Jayasimman, Associate professor, Department of Mathematics, AMET Deemed to be University, Chennai.

[•] Corresponding Author: Email address: ipjayasimman@gmail.com

[•] J. Joseline Manora, PG & Research Department

[•] of Mathematics, T.B.M.L College, Porayar.

[•] Email address: joseline_manora@yahoo.co.in

$$\begin{split} &\operatorname{SubCase(i).If\ m=3}\quad \text{then}\ \ S_{\scriptscriptstyle M}^{\scriptscriptstyle -} = \{v_{\scriptscriptstyle 22},v_{\scriptscriptstyle 23}\}\ .\ \left|S_{\scriptscriptstyle M}^{\scriptscriptstyle -}\right| = \left\lceil\frac{m-1}{2}\right\rceil + 1 \\ &\left|\left\langle N[S_{\scriptscriptstyle M}^{\scriptscriptstyle -}]\right\rangle\right| = 2 \bigg(\bigg\lceil\frac{m+1}{2}\bigg]\bigg) = \bigg\lceil\frac{q}{2}\bigg\rceil. \Big|N[S_{\scriptscriptstyle M}^{\scriptscriptstyle -}]\bigg| = 2 \bigg(\bigg\lceil\frac{m+1}{2}\bigg]\bigg) + 1 > \bigg\lceil\frac{p}{2}\bigg\rceil. \\ &\left|S_{\scriptscriptstyle M}^{\scriptscriptstyle -}\right| \leq n_{\scriptscriptstyle m}^{\scriptscriptstyle -1}(G)\ . \\ &\left|S_{\scriptscriptstyle M}^{\scriptscriptstyle -}\right| = \bigg\lceil\frac{m-1}{2}\bigg\rceil \Rightarrow \left|\left\langle N[S_{\scriptscriptstyle M}^{\scriptscriptstyle -}]\right\rangle\right| = \bigg\lceil\frac{m-1}{2}\bigg\rceil + 2 \leq \bigg\lceil\frac{q}{2}\bigg\rceil. \\ &\left|S_{\scriptscriptstyle M}^{\scriptscriptstyle -}\right| \geq n_{\scriptscriptstyle m}^{\scriptscriptstyle -1}(G)\ .\ \text{Hence}\ \left|S_{\scriptscriptstyle M}^{\scriptscriptstyle -}\right| = n_{\scriptscriptstyle m}^{\scriptscriptstyle -1}(G)\ . \end{split}$$

Sub Case(i): If
$$m > 3$$
 then $S_M = \{v_{13}, v_{15}, ... v_{1r}, v_{21}\}$ then $\left|S_M'\right| = \left\lfloor \frac{3m}{2} \right\rfloor - 2$ and $\left|\left\langle N[S_M]\right\rangle\right| = 3\left(\left\lceil \frac{m-3}{4}\right\rceil\right)$ $+4 = \left\lceil \frac{q}{2}\right\rceil$. $\left|N[S_M']\right| = \left(\left\lceil \frac{3m}{2}\right\rceil\right) + 1 > \left\lceil \frac{p}{2}\right\rceil$. Therefore $\left|S_M'\right| \le n_m^{-1}(G)$. Suppose $S_M' = \{v_{13}, v_{15}, ... v_{1r}\}$ then $\left|S_M'\right| = \left\lfloor \frac{m}{2}\right\rfloor$ and $\left|\left\langle N[S_M']\right\rangle\right| = \left\lfloor \frac{3m}{2}\right\rfloor - 2 < \left\lceil \frac{q}{2}\right\rceil$ and $\left|S_M'\right| \ge n_m^{-1}(G)$. Hence $\left|S_M'\right| = n_m^{-1}(G)$.

Theorem 2.2. If the graph $G = P_3 \times P_m$ with $m \ge 3$ then $n_m^{-1}(G) = \left\lceil \frac{2m}{3} \right\rceil$

Proof. Let $G = P_3 \times P_m$ be the vertex set. $V_1(G) = \{v_{11}, v_{12}, ..., v_{1r}\}$ and $V_2(G) = \{v_{21}, v_{22}, ..., v_{1s}\}$

$$V_3(G) = \{v_{31}, v_{32}, ..., v_{1t}\} \cdot |V(G)| = p = 3m.$$

$$|E(G)| = q = 3(2m-1)$$
. $d(v_{1r}) = d(v_{2s}) = d(v_{3t}) = 3$

Let $S_{\!\scriptscriptstyle M}^{\!\scriptscriptstyle \cdot}$ be the inverse majority neighborhood set with

cardinality
$$\left\lceil \frac{2m}{3} \right\rceil$$
.

$$\begin{split} & \text{Case(i).If } m \text{ is odd then } \left|S_{\scriptscriptstyle M}^{'}\right| = \left\lceil\frac{2m}{3}\right\rceil \Rightarrow \left|\left\langle N[S_{\scriptscriptstyle M}^{'}]\right\rangle\right| = \\ & 5 \left\lceil\frac{m-1}{2}\right\rceil + 1 > \left\lceil\frac{3(2m-1)}{2}\right\rceil = \left\lceil\frac{6m-3}{2}\right\rceil = \left\lceil\frac{q}{2}\right\rceil. \\ & \text{Suppose } \left|\left\langle N[S_{\scriptscriptstyle M}^{'}]\right\rangle\right| - 1 = \left\lceil\frac{5m}{2}\right\rceil - 2 > \left\lceil\frac{3(2m-1)}{2}\right\rceil = \left\lceil\frac{q}{2}\right\rceil. \\ & \text{Therefore } \left|S_{\scriptscriptstyle M}^{'}\right| \leq n_{\scriptscriptstyle m}^{-1}(G) \;. \end{split}$$

$$\begin{split} & \text{Case(ii).If m is even then } \left|\left\langle N[S_{_{M}}]\right\rangle\right| = \left\lfloor \frac{5m}{2} \right\rfloor - 1 \\ & < \left\lceil \frac{n(m-1) + m(n-1)}{2} \right\rceil = \left\lceil \frac{2nm - n - m}{2} \right\rceil < \left\lceil \frac{q}{2} \right\rceil. \\ & \text{Therefore } \left|S_{_{M}}\right| \geq n_{_{m}}^{-1}(G) \text{ .Hence } \quad n_{_{m}}^{-1}(G) = \left\lceil \frac{2m}{3} \right\rceil. \end{split}$$

Theorem 2. 3. For graph $G = P_4 \times P_m$ with $m \ge 4$,

$$n_m^{-1}(G) = \begin{cases} \left\lceil \frac{7m-4}{8} \right\rceil + 1 & \text{if } m \le 4 \\ \left\lceil \frac{7m-4}{8} \right\rceil & \text{if } m > 4 \end{cases}$$

Proof: Let $G = P_A \times P_{W}$ with the vertex set

$$V_1(G) = \{v_{11}, v_{12}, ..., v_{1r}\}$$
 $V_2(G) = \{v_{21}, v_{22}, ..., v_{1s}\}$ and

$$V_3(G) = \{v_{31}, v_{32}, ..., v_{3t}\}$$
 $V_4(G) = \{v_{41}, v_{42}, ..., v_{4t}\}$.

$$|V(G)| = p = 4m$$
 and $|E(G)| = q = 7m - 4$.

$$\begin{split} & \operatorname{Case(i).lf} \quad m \leq 4 \ \, \operatorname{then} \, \left| \left\langle N[S_M^{\cdot}] \right\rangle \right| = 2 \bigg\lceil \frac{6m}{4} \bigg\rceil + 1 \geq \bigg\lceil \frac{7m-4}{8} \bigg\rceil \\ & = \bigg\lceil \frac{q}{2} \bigg\rceil. \quad \left| S_M^{\cdot} \right| \leq n_m^{-1}(\mathbf{G}) \ \, . \ \, \operatorname{Suppose} \left| \left\langle N[S_M^{\cdot}] \right\rangle \right| - 1 = 2 \bigg\lceil \frac{3m}{2} \bigg\rceil \\ & \leq \bigg\lceil \frac{7m-4}{8} \bigg\rceil = \bigg\lceil \frac{q}{2} \bigg\rceil. \quad \operatorname{Therefore} \left| S_M^{\cdot} \right| \geq n_m^{-1}(\mathbf{G}) \ \, . \quad \, \operatorname{Hence} \\ & \left| S_M^{\cdot} \right| = n_m^{-1}(\mathbf{G}) \ \, . \end{split}$$

Case(ii). If
$$m > 4$$
 then $\left| S_M \right| = \left\lceil \frac{7m - 4}{8} \right\rceil \Rightarrow \left| \left\langle N[S_M] \right\rangle \right| = 2$

$$\left\lceil \frac{7m - 4}{8} \right\rceil \ge \left\lceil \frac{7m - 4}{2} \right\rceil = \left\lceil \frac{q}{2} \right\rceil. \ \left| S_M \right| \le n_m^{-1}(G) \text{ . Suppose}$$

$$\left| \left\langle N[S_M] \right\rangle \right| - 1 = 2 \left\lceil \frac{7m - 4}{4} \right\rceil - 1 \le \left\lceil \frac{7m - 4}{2} \right\rceil = \left\lceil \frac{q}{2} \right\rceil. \text{ Therefore}$$

$$\left| S_M \right| = n_m^{-1}(G) = \left\lceil \frac{7m - 4}{4} \right\rceil.$$

Theorem 2.4. If the graph $G = P_5 \times P_m$ with $m \ge 5$ then

$$n_{m}^{-1}(G) = \begin{cases} \left\lceil \frac{9m-5}{8} \right\rceil + 1 & \text{if } m = 5 \\ \left\lceil \frac{9m-4}{8} \right\rceil & \text{if } m > 5 \end{cases}$$

Proof. For the graph $G=P_5\times P_m$ with $\big|V(G)\big|=p=5m$ and $\big|\mathrm{E}(G)\big|=q=9m-5$. $d(v_{1r})=d(v_{5f})=2$ and $d(v_{2s})=d(v_{3t})=d(v_{4t})=3$.

Case(i). If
$$m = 5$$
 then $\left| \overrightarrow{S_M} \right| = \left\lceil \frac{9m - 4}{8} \right\rceil + 1 \Rightarrow \left| \left\langle N[\overrightarrow{S_M}] \right\rangle \right|$

$$= 2 \left\lceil \frac{9m - 5}{4} \right\rceil + 1 > \left\lceil \frac{9m - 5}{2} \right\rceil > \left\lceil \frac{q}{2} \right\rceil \cdot \left| N[\overrightarrow{S_M}] \right| = 2 \left\lceil \frac{9m - 5}{4} \right\rceil - 1$$

$$> \left\lceil \frac{5m}{2} \right\rceil > \left\lceil \frac{p}{2} \right\rceil \cdot \left| \overrightarrow{S_M} \right| < n_m^{-1}(G)$$

Case(ii). If
$$m > 5$$
 then $\left| S_{M}^{'} \right| = \left\lceil \frac{9m-5}{8} \right\rceil \Rightarrow \left| \left\langle N[S_{M}^{'}] \right\rangle \right| = 2$

$$\left\lceil \frac{9m-5}{4} \right\rceil > \left\lceil \frac{9m-5}{2} \right\rceil > \left\lceil \frac{q}{2} \right\rceil \cdot \left| S_{M}^{'} \right| < n_{m}^{-1}(G) \text{ . Suppose}$$

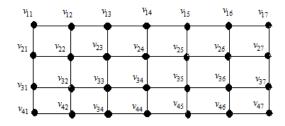
$$\left| S_{M}^{'} \right| - 1 = \left\lceil \frac{9m-5}{8} \right\rceil - 1 \text{ then } \left| \left\langle N[S_{M}^{'}] \right\rangle \right| = 2 \left\lceil \frac{9m-5}{4} \right\rceil$$

$$-1 < \left\lceil \frac{9m-5}{4} \right\rceil < \left\lceil \frac{q}{2} \right\rceil \cdot \left| S_{M}^{'} \right| > n_{m}^{-1}(G) \text{. Hence } \left| S_{M}^{'} \right| = n_{m}^{-1}(G)$$

$$= \left\lceil \frac{9m - 5}{8} \right\rceil.$$

Theorem 2.5. For graph $G = P_n \times P_m$ with m > 5 then $n_m^{-1}(G) = \left\lceil \frac{2nm - n - m}{8} \right\rceil$.

III EXAMPLE



For the graph $G = P_4 \times P_7$ with p = 4m = 4(7) = 28 and q = 7m - 4 = 7(7) - 4 = 45 then $n_m^{-1}(G) = 6$.

Theorem 2.7. If the graph $G = C_3 \times P_m$ with $m \ge 3$ then

$$n_m^{-1}(G) = \begin{cases} \left\lceil \frac{2(m-1)}{3} \right\rceil + 1 & \text{if } m \le 3 \\ \left\lceil \frac{3(2m-1)}{8} \right\rceil & \text{if } m > 3 \end{cases}$$

Proof. For the graph $G = C_3 \times P_m$ with |V(G)| = p = 3m and |E(G)| = q = 3(m-1) + 3m

Case(i). If
$$m \le 3$$
 then $\left| S_M \right| = \left\lceil \frac{2(m-1)}{3} \right\rceil + 1 \Rightarrow \left| \left\langle N[S_M] \right\rangle \right|$

$$= 4 \left\lceil \frac{3m}{2} \right\rceil - 7 > \left\lceil \frac{3(m-1) + 3m}{2} \right\rceil = \left\lceil \frac{3m - 3 + 3m}{2} \right\rceil = \left\lceil \frac{3(2m-1)}{2} \right\rceil = \left\lceil \frac{q}{2} \right\rceil. \left| N[S_M] \right| = \left\lceil \frac{3m}{2} \right\rceil + 2 > \left\lceil \frac{3m}{2} \right\rceil = \left\lceil \frac{p}{2} \right\rceil.$$

Therefore $\left|S_{M}\right| \leq n_{m}^{-1}(G)$. Suppose $\left|S_{M}\right| - 1$ then

$$\left|\left\langle N[S_{M}^{\cdot}]\right\rangle\right| = 3\left\lfloor\frac{3m}{2}\right\rfloor - 6 < \left\lceil\frac{q}{2}\right\rceil. \left|N[S_{M}^{\cdot}]\right| = 3\left\lfloor\frac{m+1}{2}\right\rfloor + 1 < \left\lceil\frac{p}{2}\right\rceil$$

Therefore $|S_M| \ge n_m^{-1}(G)$. Hence $|S_M| = n_m^{-1}(G)$.

Case(ii). If
$$m > 3$$
 then $\left| S_{M} \right| = \left\lceil \frac{3(2m-1)}{8} \right\rceil$.

Sub case(i). If m is odd then $\left|\left\langle N[S_{M}]\right\rangle\right|=6\left|\frac{m}{2}\right|+2<\left\lceil\frac{q}{2}\right\rceil$.

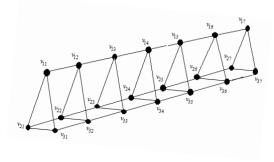
Suppose
$$\left|S_{M}^{\cdot}\right|-1$$
 then $m=5,9,13,17,...$ then $\left|\left\langle N[S_{M}^{\cdot}]\right\rangle\right|=6\left\lfloor\frac{m-1}{2}\right\rfloor < \left\lceil\frac{q}{2}\right\rceil$. Suppose $m=7,11,15,19,...$ then $\left|\left\langle N[S_{M}^{\cdot}]\right\rangle\right|=4\left\lfloor\frac{2m}{3}\right\rfloor < \left\lceil\frac{q}{2}\right\rceil$. $\left|S_{M}^{\cdot}\right| \geq n_{m}^{-1}(G)$.

Sub case(ii). If m is even. Suppose m = 4i(for i = 1, 2, 3,...)

then
$$\left|\left\langle N[S_{M}^{\cdot}]\right\rangle\right| = 6\left\lceil\frac{m}{2}\right\rceil > \left\lceil\frac{q}{2}\right\rceil$$
. Therefore $\left|S_{M}^{\cdot}\right| \leq n_{m}^{-1}(G)$. Hence $n_{m}^{-1}(G) = \left|S_{M}^{\cdot}\right| = \left\lceil\frac{3(2m-1)}{8}\right\rceil$.

IV EXAMPLE

For
$$G = C_3 \times P_m$$
 with $p = 3m = 3(7) = 21$ and $q = 3(m-1) + 3m = 3(7-1) + 3(7) = 39$ then $n_m^{-1}(G) = 5$



V CONCLUSION

The research results obtained to find the inverse majority neighborhood number for Cartesian product of graphs.

ACKNOWLEDGMENT

The first author wish to thank AMET Deemed to be university for its support and encouragement.

REFERENCES

- [1] Frank Harry, "Graph Theory", Addision-Wesley Addision-
- [2] Wesley reading MA.
- [3] Haynes, T W hedetniemi, S T, and Slater PJ,"
- [4] Fundamentals of Domination in Graphs", Marcel Dekker.
- [5] Inc., New York, 1998.
- [6] Sampathkumar E and Walikar H B, "The Connected
- [7] Domination of a Graph", Jour. Math.phy.sci. 13.6, 1979.
- [8] Renu Laskar, Charles Wallis, "Chessboard Graphs,
- [9] Related Designs, and Domination Parameters", Journal of
- [10] statistical Planning and Inference 76 ,pp. 285–294, 1999.
- [11] Jean-François Couturier, Pinar Heggernes, Pim van
- [12] Dieter Kratsch, "Minimal Dominating Sets in Graph
- [13] Classes: Combinatorial Bounds and Enumeration", Theoretical
- [14] Computer Science 487 (2013) pp.82-94
- [15] Michael A. Henning A "Survey of Selected Recent Results on
- [16] Total Domination in Graphs" Discrete Mathematics 309
- [17] pp.32-63, 2009.
- [18] Sampathkumar E and Prabha S Neeralagi,
- [19] "Neighborhood Number of a Graph", Indian J. Pure.

- Appl.
- [20] Math, 16.2, pp.126-132, 1985.
- [21] Sampathkumar E and Prabha S Neeralagi, "Independent,
- [22] Perfect and Connected Neighborhood Number of a Graph".
- [23] Journal of combinators Information and System of science.
- [24] Joseline Manora J and Swaminathan V, "Majority
- [25] Dominating Sets"- Published in J A R J 3.2,pp.75-82, 2006 .Joseline Manora J and Swaminathan V, "Majority
- [26] Neighborhood Number of a Graph"- Published in Scientia
- [27] Magna, D ept. of Mathematics Northwest University,
- [28] Xitan, P.R China- Vol(6), 2, 20-25, 2010.
- [29] Joseline Manora J and Paulraj Jayasimman I,
- [30] "Neighborhood Sets Polynomial of a Graph", International
- [31] Journal of Applied Mathematical Sciences, ISSN 0973-0176
- [32] 6. 1, pp.91-97,2013.
- [33] Joseline Manora J and Paulraj Jayasimman I,
- [34] "Independent Mjority Neighborhood Number of a Graph",
- [35] International Journal of Applied Computational Science and
- [36] Mathematics, 4.1, pp. 103-112, 2014.
- [37] Joseline Manora J and Paulraj Jayasimman I, "Results
- [38] On Neighborhoods Sets Polynomial of a Graph", International
- [39] Journal of mathematical sciences with computer applications
- [40] pp 421-426, 2015.
- [41] Joseline Manora J and Paulraj Jayasimman I, "Majority
- [42] Neighborhood Polynomial of a Graph", Vol.7, pp 97-102, 2015.
- [43] Paulraj Jayasimman I and Joseline Manora J, "Independent
- [44] Neighborhood Polynomial of a graph", Global Journal of pure
- [45] and Applied Mathematics, Vol.13,pp.179-181.
- [46] Paulraj Jayasimman I and Joseline Manora J, "Independent
- [47] Majority Neighborhood Polynomial of a graph",
- [48] International Journal Mathematical Archive, Vol. 8, pp
- [49] 109-112.
- [50] Paulraj Jayasimman I and Joseline Manora J,
- [51] "Connected Majority Neighborhood Polynomial of a Graph",
- [52] International Journal of Computational and Applied
- [53] Mathematics ,Vol. 12, pp 208-212, 2017.
- [54] Kulli.V.R and Kattimani, "The Inverse Neighborhood
- [55] Number of a Graph", South.East. Asian.J.Math. and Math.
- [56] Sc., 6.3,pp. 23-28, 2008.
- [57] Paulraj Jayasimman I and Dhivya T,"Inverse Majority
- [58] neighborhood Number of a Graph", IOP Journal of physics

- [59] conference series, Vol 1139,ISSN 1742-6596,pp 1-6, 2018.
- [60] Paulraj Jayasimman I and Dhivya T, "Inverse Majority
- [61] Vertex Covering Number of Graph", International Journal of
- [62] Engineering and Technology, Vol 7, ISSN 2227-524X,pp 2925-
- [63] 2927,2018.
- [64] Paulraj Jayasimman I and Joseline Manora J,
- [65] "The Maximal Majority Neighborhood Number of a Graph",
 - International journal of of Research, Vol 7,pp 670--673, Aug 2018.
- [66] Paulraj Jayasimman I and Joseline Manora J,
- [67] "Connected Majority Neighborhood Number of aGraph".
- [68] International journal of of Research, Vol 7,pp 984-987, Sep.2018.