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Abstract: If
M
S  be the majority set of G   if 

M
V S   contains a majority neighborhood set '

M
S  of  G  then  '

MS    be the inverse 

majority neighborhood set ofG  with respect to 
M
S .In this article the inverse majority neighborhood number 1(G)

M
n  ofG  are 

determined for cartesian product of graphs.  
 
Index Terms: Majority Neighborhood Set, Majority Neighborhood Number, Inverse Majority Neighborhood Number.  

———————————————————— 

 

1 INTRODUCTION 
The concept of majority neighborhood set has been studied 
by Prof.V.Swaminathan and J. Joselin Manora[9]. The 
neighborhood parameters are studied in the articles[11,][15], 
[16], [17] ,[21] ,[22].Further inverse majority neighborhood set 
introduced by I.Paulraj Jayasimman[19],[20]. A set S  of 

vertices in a graph G  is a neighborhood set if 


 [ ]
v S

G N v

,where [ ]N v  is the subgraph of G  induced by v  and all 

vertices adjacent to v . The neighborhood number 
0
( )n G of G  

is the minimum number of vertices in a neighborhood set of 

G  [7]. A set ( )S V GÍ  is called a majority neighborhood set if 

[ ]M
v S

G N v

Î

=  contains at least 
2

pé ù
ê ú
ê ú
ê ú

 vertices and at least 

2

qé ù
ê ú
ê ú
ê ú

 edges. A majority set S  is called a minimal majority 

neighborhood set if no proper subset of S is a majority 

neighborhood set. The minimum cardinality of a majority 
neighborhood set is called the majority neighborhood number 

ofG  and is denoted by ( )MN G [9]. If MS  be the majority 

neighborhood set of G . If MV S-
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

contains a majority neighborhood set '
MS of G , then '

MS  is 

called an inverse majority neighborhood set of G  with respect 

to MS . The inverse majority neighborhood number 1(G)Mn
-  of 

G  is the minimum cardinality of an inverse majority 

neighborhood set of G [19].Cartesian product of graph 

operation has play vital role in chemical graph and network 
structure. 
             

2 INVERSE MAJORITY NEIGHBORHOOD 
NUMBER OF CARTESIAN PRODUCT OF 
GRAPHS 

     Theorem 2.1. For   
2 m

G P P  with  2m then  

  
  
 

1(G)
2m

m
n  

       Proof. Let  
2 m

G P P with  2m  and the vertex set 

          
11 12 1 21 21 2

(G) { , ,..., , , ,..., }
r s

V v v v v v v .  
1 2

d( ) d( ) 2
r s
v v  

           (G) 2V p mand    E(G) 2(m 1) mq . 

       Claim: '

M
S  be the inverse majority neighborhood set with   

            cardinality 
 
 
 2

m
           

     Case(i). m=even. Let '

M
S  be the inverse majority 

neighborhood set 

        then


'

13 15 1 1 21
{ , ,..., , }

M r
S v v v v

   
    

  

' 1
1

2M

m
S  

                   
            

        

' 1 2( 1) 3 2
[ ] 3 2 .

2 2 2 2M

qm m m m
N S  

       
    

       
    

' 3 2
[ ]

2 2 2M

pm m
N S m .Therefore  

       
' 1(G)

M m
S n .Suppose


'

13 15 1 1
{ , ,..., }

M r
S v v v then  

      ' 3 2(m 1) 1 2m 2 m
[ ] 3

2 2 2
M

m
N S

        
        
     

  

    
 

  
 2

q
.

  
     
   

' 3
[ ] 2

2 2M

pm
N S .Therefore

' 1(G)
M m
S n .   

        Hence 
' 1(G)

M m
S n  

   Case(ii).If m odd   
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  SubCase(i).If m=3 then '

22 23
{ , }

M
S v v . 

  
  
 

' 1
1

2M

m
S  

  
           

             
         

' '1 1
[ ] 2 . [ ] 2 1 .

2 2 2 2M M

q pm m
N S N S

  

      

' 1(G)
M m
S n .Suppose '

22
{ }

M
S v then  

     
      

         
     

' '1 1
[ ] 2

2 2 2M M

qm m
S N S  

    

' 1(G)
M m
S n . Hence 

' 1(G)
M m
S n . 

Sub Case(i): If  3m  then '

13 15 1 21
{ , ,... , }

M r
S v v v v

 

   then  

 
  
 

' 3
2

2M

m
S   and  

   
   

  

' 3
[ ] 3

4M

m
N S   

  
 

   
 

4 .
2

q     
      

    

' 3
[ ] 1

2 2M

pm
N S .Therefore

 

     

' 1(G)
M m
S n . Suppose '

13 15 1
{ , ,... }

M r
S v v v  then 

    

 
  
 

'

2M

m
S and 

  
     
   

' 3
[ ] 2

2 2M

qm
N S and 

    
' 1(G).

M m
S n Hence 

' 1(G)
M m
S n .

 Theorem 2.2. If the graph  
3 m

G P P with  3m  

    then   
  
 

1 2
(G)

3m

m
n  

Proof. Let  
3 m

G P P  be the vertex set.  

    
1 11 12 1
(G) { , ,..., }

r
V v v v and  

2 21 22 1
(G) { , ,..., }

s
V v v v  

   


3 31 32 1
(G) { , ,..., }

t
V v v v .  (G) 3V p m .    

      E(G) 3(2m 1)q .   
1 2 3

d( ) d( ) d( ) 3
r s t
v v v  

   Let '

M
S be the inverse majority neighborhood set with 

 cardinality  
 
 
 

2

3

m
. 

Case(i).If m  is odd then
 

  
 

' 2

3M

m
S '[ ]

M
N S   

    

  
 
 

1
5

2

m       
        

     

3(2 1) 6 3
1

2 2 2

qm m
. 

  Suppose
     

         
     

' 5 3(2 1)
[ ] 1 2

2 2 2M

qm m
N S . 

  Therefore 
' 1(G)

M m
S n . 

Case(ii).If m is  even then 
 

  
 

' 5
[ ] 1

2M

m
N S  

    
  
 

( 1) ( 1)

2

n m m n     
    
   

2

2 2

qnm n m
.   

     Therefore
' 1(G)

M m
S n .Hence     

  
 

1 2
(G) .

3m

m
n  

Theorem 2. 3.  For graph  
4 m

G P P  with  4m ,  

     

  
  

 
 

      

1

7 4
1 4

8
( )

7 4
4

8

m

m
if m

n G
m

if m

 

Proof: Let  
4 m

G P P   with the vertex set 


1 11 12 1
(G) { , ,..., }

r
V v v v 

2 21 22 1
(G) { , ,..., }

s
V v v v and


3 31 32 3
(G) { , ,..., }

t
V v v v

  


4 41 42 4
(G) { , ,..., }

l
V v v v .  

 (G) 4V p m  and    E(G) 7 4q m .
 

Case(i).If   4m  then 
    

     
   

' 6 7 4
[ ] 2 1

4 8M

m m
N S   

     
 

  
 

.
2

q
 

' 1(G)
M m
S n  . Suppose

 
   

 

' 3
[ ] 1 2

2M

m
N S

  

     

   
    
   

7 4
.

8 2

qm
 Therefore

' 1(G)M mS n .  Hence  

      
' 1(G)

M m
S n . 

Case(ii). If  4m  then 
  

   
 

' '7 4
[ ] 2

8M M

m
S N S   

      
      

      
     

7 4 7 4
.

8 2 2

qm m
 ' 1(G)

M m
S n . Suppose  

       
      

         
     

' 7 4 7 4
[ ] 1 2 1 .

4 2 2M

qm m
N S Therefore 

          
   

 

' 1 7 4
(G)

4M m

m
S n .

 
Theorem 2.4. If the graph  

5 m
G P P   with  5m   then  

       

  
  

 
 

      

1

9 5
1 5

8
( )

9 4
5

8

m

m
if m

n G
m

if m

   

 Proof. For the graph  
5 m

G P P   with  (G) 5V p m   and  

      E(G) 9 5q m .  
1 5

( ) ( ) 2
r f

d v d v  and 

  
2 3 4

( ) ( ) ( ) 3
s t l

d v d v d v   . 

Case(i).  If    5m   then  
  

   
 

' '9 4
1 [ ]

8M M

m
S N S

 
      

        
     

9 5 9 5
2 1 .

4 2 2

qm m   
  

 

' 9 5
[ ] 2 1

4M

m
N S  

  
    
   

5
.

2 2

pm ' 1(G)
M m
S n

 

Case(ii).  If  5m  then  
  

   
 

' '9 5
[ ] 2

8M M

m
S N S  

      
      

     

9 5 9 5
.

4 2 2

qm m ' 1(G)
M m
S n . Suppose

  
   

 

' 9 5
1 1

8M

m
S   then 

  
  

 

' 9 5
[ ] 2

4M

m
N S  

   
     

   

9 5
1 .

4 2

qm ' 1(G).
M m
S n

 
Hence 

' 1(G)
M m
S n  
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9 5
.

8

m
 

 

Theorem 2.5.  For graph  
n m

G P P    with  5m  then 

    
  
 

1 2
(G) .

8m

nm n m
n   

 

III   EXAMPLE 
 

 
 
 
 
 
 
 
 
 
 

 

For the graph  
4 7

G P P  with   4 4(7) 28p m  and 

    7 4 7(7) 4 45q m  then  1(G) 6.
m
n

 
 

Theorem 2.7.  If  the graph  
3 m

G C P  with  3m  then 

     

  
  

 
 

      

1

2( 1)
1 3

(
3

)
3(2 1)

3
8

m

m
if m

n G
m

if m

  

Proof. For the graph  
3 m

G C P  with  (G) 3V p m  and  

     
   E(G) 3( 1) 3q m m  

Case(i). If  3m  then 
  

   
 

' '2( 1)
1 [ ]

3M M

m
S N S

 

   

 
   

 

3
4 7

2

m        
    

   

3( 1) 3 3 3 3

2 2

m m m m
 

    

   
   

   

3(2 1)
.

2 2

qm
 

    
        
     

' 3 3
[ ] 2 .

2 2 2M

pm m
N S   

Therefore
' 1(G).

M m
S n  Suppose ' 1

M
S  then

  
     

   

' 3
[ ] 3 6 .

2 2M

qm
N S

   
     

   

' 1
[ ] 3 1

2 2M

pm
N S

Therefore 
' 1(G).

M m
S n  Hence 

' 1(G).
M m
S n  

Case(ii). If  3m  then 
  

  
 

' 3(2 1)
.

8M

m
S   

Sub case(i). If m is odd then
  

     
   

'[ ] 6 2 .
2 2M

qm
N S

 

    

Suppose ' 1
M
S  then     5,9,13,17,...m  then    

     
   

    
   

' 1
[ ] 6 .

2 2M

qm
N S  Suppose  7,11,15,19,...m  

     then 
  

    
   

' 2
[ ] 4 .

3 2M

qm
N S  

' 1(G).
M m
S n  

Sub case(ii). If m is even. Suppose  4 ( 1,2,3,...)m i for i
   

      
then 

  
    

   

'[ ] 6 .
2 2M

qm
N S  Therefore 

' 1(G).M mS n  

      Hence
1 ' 3(2 1)
(G)

8
m M

m
n S  

   
 

 . 

 
IV  EXAMPLE 
 
 

For  
3 m

G C P  with   3 3(7) 21p m  and 

      3( 1) 3 3(7 1) 3(7) 39q m m  then  1(G) 5
m
n   

 
 
 
 
 
 
 
 
 
 
 
 

V  CONCLUSION 
The research results obtained to find the inverse majority 
neighborhood number for Cartesian product of graphs.  
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