A Predicate Based Fault Localization Technique Based On Test Case Reduction

Rohit Mishra, Dr. Raghav Yadav

ABSTRACT: In today’s world, software testing with statistical fault localization technique is one of most tedious, expensive and time consuming activity. In faulty program, a program element contrast dynamic spectra that estimate location of fault. There may have negative impact from coincidental correctness with these technique because in non failed run the fault can also be triggered out and if so, disturb the assessment of fault location. Now eliminating of confounding rules on the recognizing the accuracy. In this paper coincidental correctness which is an effective interface is the reason of success of fault location. We can find out fault predicates by distribution overlapping of dynamic spectrum in failed runs and non failed runs and slacking the area by referencing the inter class distances of spectra to clamp the less suspicious candidate. After that we apply coverage matrix base reduction approach to reduce the test cases of that program and locate the fault in that program. Finally, empirical result shows that our technique outshine with previous existing predicate based fault localization technique with test case reduction.

Keywords: Fault Localization, Predicates, Dynamic Spectrum, Coincidental correctness, Class distribution, Coverage base matrix

1 INTRODUCTION

TODAY’S software and system of software are going to be more complicated. The quality of software is becoming more important and effective mechanism for academia and industries. The failed program is the reason for fault existing in a program. Now to overcome from this, the programmer fixes a program fault and locates it first. There are several fault localization technique exist.

Although the statistic fault localization (SFL) technique is reported successful and its effectiveness to figure out faults are unavoidable influenced by the behavior of input data. There is a phenomenon referred to as coincidental correctness that reflects, no failure is detected even though the fault has been exercised [18]. The part of non failed runs that coincidentally manifest no abnormal behavior may have a negative effect on the accuracy of SFL technique because their profile is closer to those of the failed runs. There is the straight idea to discriminate the coincidental correctness runs and remove them from input[6,12]. However the discriminate of coincidental correctness may give feasibility and effectiveness. The advance experiment gave the pessimistic report that the false negative related to the discrimination of coincidental correctness runs is above 50% for one of the three experiment subject[13]. Now the challenging and interesting question is arise that can we allow the presence or existing of coincidental correctness and figure out a fault with the presence of it. The test suit reduction technique is overcome of it with coverage base matrix (program without loop) and path vector base reduction (program with loop). In this paper we examine the nature and behavior of dynamic spectra for different program predicates with the existence of coincidental correctness and propose a technique to find out the most fault relevant predicates. We emphasis it with two step. In our first step, seize the dynamic spectra of program predicate in case of both failed and non failed runs respectively. Then we move on to the concept of calculating overlapping of the spectrum distribution in both the cases i.e failed and non failed runs to find out the predicates whose existing lead to the triggering of a fault. Next we slacken the region by calculating the inter class distance for the spectra in two bodies(failed and non failed) to clamp interested less dubious predicates. In the second step we maintain the coverage matrix of that program with its failed and passed statement respectively. Now with the help of referencing their calculated dubious we can sort the test cases by applying AND operation with every failed statement and then find the fault localization requirement vector (FLreq) and find the reduce test case. Experiment shows that our technique.
outshine some representative existing predicate based SFL technique. Our paper is mannered as follows: In first section we propose a technique that estimates fault localization with the presence of coincidental correctness. It is requisite to be more accurate since there is no longer a need to discriminate the coincidental correctness runs.In second section of this paper we present our motivation and research aim. Section third elaborates our model to the related work. Section four gives the experimental evolution and measurement of the paper. Section five gives the related work. And finally we conclude our paper on section six.

2 MOTIVATION

2.1 THE SAMPLE PROGRAM

There is the example in Figure 2 shows a piece of code to find out the mid value among three inputs. A fault is seeds in the statement S_7 which may be a reason of the program to generate an incorrect output. We take three integer as an input to begin the program and permute them to create eight test cases named as: T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8. We notices that the test cases from T_4, T_5 and T_6 exercised the faulty statement but only T_7 and T_8 give unexpected output. Thus we noted down test case T_7 and T_8 as failed runs and other execution as non-fails runs. To make our discussion easier we introduce the word coincidental run, to name the program execution over T_1, T_3 and T_5 where the fault is figured but no state is figured as faulty observable. To differentiate from them we introduce the term successful runs to name the program runs over T_1, T_3 and T_7. Now we are going to install 12 predicate in the program named as P_1, P_2, P_3, P_4, P_5, P_6, P_7, P_8, P_9, P_{10}, P_{11}, P_{12} in above Figure 2. We also consider their dynamic spectrum in the form of $x:y$ in the program which indicate the number of times the predicate is evaluated as true and evaluated as false respectively. Let us take first row to illustrate. In the test case of T_1 predicate P_1: $x=a$ is evaluated false (0) ones and never evaluated true. Thus we calculate dynamic spectra of predicate P_1 as "0:1" in that run

2.2 INSPIRING OUR WORK

As there is no loop in the program and it is execute sequentially, we introduce four categories of predicates named as: Neutral, Fault leading, Fault led and Balanced predicate.

Now the twelve predicate are partitioned into group in which P_1, P_2 and P_3 is neutral predicate P_4, P_5 and P_6 fault leading predicate P_7, P_8 and P_9 is balanced predicate and P_{10}, P_{11} and P_{12} is fault led predicates. Here we notice that predicate P_4 most fault relevant predicate is fault leading predicate with such classification. In neutral predicate its dynamic spectra in every run resemble each other. We can understood as that there are very less chances to make relationship with fault so that their behavior makes less difference in every runs either it is a failed runs or non failed runs. If we can take the predicate P_4 in the test case T_4 to illustrate predicate P_4: $x=a$ lies on the first statement and always evaluate false and its spectra in all the runs are equal. For a fault leading predicates there is a difference in its dynamic spectra in coincidental runs (the non failed in coincidental correctness happening) are identical to those in run but different from those in successful runs (the non failed without coincidental correctness happening). We use the symbol "\neq" and "\approx" in Figure 2 to make a better view. We can elaborate as, the execution paths leading to a fault often concentrate into small clusters as reported in [6]. That’s why this predicate may revealed the similar dynamic spectra in both coincidental runs and failed runs. Let us take predicate P_4 and test case T_4 to illustrate. Predicate P_4: $x=y$ give false which skip the statement S_9 to triggers the false the statement S_7. This is the only legal way that leads the fault and for predicate p_4 in test case T_4, their dynamic spectra are same to those in T_7 and T_8 and different from T_1, T_2 and T_3. In Fault led predicate the dynamic spectra are identical for coincidental run to those in the successful run and different from failed runs. We can elaborate it as if the fault is exercised the faulty state may be coincidentally not propagate and the led program still behave as normal. That’s why there is no difference can be observed in the dynamic spectra from the successful run and coincidental run for fault led predicate. Let us take predicate P_4 and program run (test case) T_4 to illustrate. During program run T_4 even with the faulty value of x, predicate P_4: $x=y$ give the correct solution (i.e evaluate false). The fault is glossed over which leads the rest program except (from S_9 to the end) to execute normal. Now the result in predicate P_4 in the Test case T_4, their dynamic spectra are same to T_1 and T_2 and different from T_7 and T_8. In balanced predicate the dynamic spectra are equally for coincidental run to those in the successful run and equally from failed runs. We can explain it as if the fault is exercised the faulty state may be
coincidently not propagate and the program still behave as normal. That's why there is no difference can be observed in the dynamic spectra from the successful run and coincidental run for balanced predicate. Let us take predicate P_8 and program run (test case) T_4 to illustrate. During program run T_4 even with the faulty value of x, predicate "P_8: $x>y$" give the correct solution (i.e evaluate false). The fault is glossed over which leads the rest program except from S_{13} to the end) to execute normal. Now the result in predicate $P10$ in the Test case $T4$, their dynamic spectra are balanced to T_1, T_2, T_3 and T_6 but different from T_5, T_6, T_7 and T_8. Now with the help of overlapping of spectrum distribution in failed run and non failed run can be effective means to differentiate a fault leading predicate from the other. As we mentioned above that the dynamic spectra of predicate P_2 in test case T_4 are same to those in T_7 and T_8 and different from T_2 and T_3. So we record the overlapping 100 percent in T_4, T_5, T_6, T_7 and T_8. The same mechanism is observed with the predicate P_9, the dynamic spectra in T_7 and T_8 are not met in T_2, T_5, and T_6 and record the overlapping 0 percent for it. Thus these caparison which shows the overlapping rule out the fault led predicate. How does our model work in such types of cases? We will detail it in our model in the next section.

3 OUR MODEL

A Problem Setting

Let P be a faulty program with n predicate that are referred to as $p_1, p_2, p_3, ..., p_n$. Program run R is divided in two sets N and F where $N=\{n_1, n_2, n_3, ..., n_i\}$ for the y non failed runs and $F=\{f_1, f_2, f_3, ..., f_v\}$ for v failed runs. As we can see in our Figure 2 $N=\{T_1, T_2, T_3, T_4, T_5, T_6\}$ and $F=\{T_7, T_8\}$.

Now we introduce the two term as $e_T(p_i, r_i)$ and $e_F(p_i, r_i)$ to measure the number of times a predicate p_i is evaluated as true or false for the number of program runs r_i respectively.

B Preliminaries

Before starting to elaborate our model we first introduce some preliminaries. Following previous studies [11] we use $x(p_i, r_i)$ to show the evolution bias of predicate p_i in a program run r_i. Here an evolution bias is the probabilities of a predicate being evaluated true in a program run. It is calculated as-

$$x(p_i, r_i) = \frac{x(p_i, f_i)}{x(p_i, f_i) + x(p_i, r_i)}$$

We also use the term $x(p_i, f_i)$ and $x(p_i, r_i)$ to express the evaluation bias of predicate p_i in both failed and non failed runs respectively. Further to denote the vector of evolution bias for each predicate in i^{th} failed run f_i, we have

$$X^f_i = [x(p_1, r_i), x(p_2, r_i), ..., x(p_n, r_i)]$$

Where X^f_i denote the vector of evaluation bias in the ith non failed run f_i. Similarly X^r_i denotes the vector of evolution bias in the ith non failed run n_i. Now the overlapping of spectrum distribution in both failed and non failed run consider the similarity between two types of run. According to the evaluation bias which exists in both of them. In this paper to measure the overlapping, we introduce Bhattacharya coefficient [2]. This function is used to measure the overlapping amount between two statistical sample and population. Let p_j and y_j be the predicate and evaluation bias respectively and w_r and w_n denotes failed runs and non failed runs respectively. Bhattacharya coefficient can be formulized as:

$$BC(P(y_j/w_r), (y_j/w_n)) = \sum_{y_j \in D_1} \sqrt{P(y_j/w_r) \times P(y_j/w_n)}$$

Where D_1 is the domain of y_j and $P(y_j/w_r)$ and $P(y_j/w_n)$ are the coincidental probabilities of y_j in the set of failed and non failed runs respectively. The probability of y_j exists in both of the two kinds of runs which are $P(y_j/w_r) \times P(y_j/w_n)$. The measure is proved to be the upper bound of Bayes error which directly related to the overlapping of two model. We use σ^f_j/ν and σ^n_j/μ in this paper to approximate $P(y_j/w_r)$ and $P(y_j/w_n)$ respectively. Where σ^f_j/ν is the kind of appearance of y_j in the set of failed runs. σ^n_j/μ is the kind of appearance of y_j in the set of non failed runs. Now take the predicate p_i in our Fig-2 as an example and we can see that there exists only one variable $y_i = 0$. So conditional probability is $P(y_i/w_r)$ and $P(y_i/w_n)$ are 1 and $BC(P(y_i/w_r), (y_i/w_n)) = 1$.

C Our Technique

Our technique consists of five steps.

1 Gathering dynamic spectra: Gathering dynamic spectra for all predicate in every test case and predicatators are inserted in three kinds of statement i.e Branch statement, Scalar pair and Return statement. To capture the dynamic spectra we use evaluation bias.

2 Calculating the overlapping of dynamic spectrum: In both neutral and fault leading predicate since their dynamic spectra for failed run and coincidental run are reassemble each other to great extent. So we use the spectrum distribution overlapping to differentiate them from fault led predicate. Bhattacharya distance [2] is used to calculate the spectrum distribution in case of failed and non failed run.(note: we cannot figure out the coincidental run from the non failed runs). Now we have given a predicate P_j to determine the overlapping of its spectrum distribution in failed run F and in non failed run N. The overlapping O_j of the spectrum distribution in both failed and non failed runs can be explained in terms of Bhattacharya distance:

$$O_j = -\ln[BC(P(y_j/w_r), (y_j/w_n))]$$

Where $BC(\cdot)$ is Bhattacharya coefficient.

If $BC(P(y_j/w_r), (y_j/w_n)) = 0$ we set O_j to be $+\infty$.

After this step we may record all the predicate in descending order by referencing their overlapping values. The top ranked predicate contains more fault leading predicate. However we also predict that after such a step the neutral predicate may mix with fault leading predicate as well as balanced predicate in the result.

3 Calculating the inter and intra class distance: We notice in the previous result that neutral predicate will still mix up with the fault leading predicate. Let us discuss inter class distance [7] to show the solution. In the motivation example we have demonstrate the spectra in both fault leading...
and fault led predicates in successful and failed runs which are different from each other to a great extent. That's why we adopt to estimate the inter class distance to differentiate them from neutral predicate. The inter class distance B_j for a predicate P_j is calculated as:

$$B_j = |m^f_j - m^n_j|$$

Where m^f_j and m^n_j denotes mean value of the evaluation bias for P_j in the failed and non failed test case respectively and m_j^f and m_j^n are calculated as :

$$m_j^f = \frac{1}{v}\sum_{i=1}^{v}[x(p_i,f_i)] \text{ and } m_j^n = \frac{1}{u}\sum_{i=1}^{u}[x(p_i,n_i)]$$

The inter class distance B_j measure the distance between the evaluation bias of predicate P_jin the set of both failed and non failed run respectively. In the motivation, we have explained that the inter class distance of neutral predicate is less than fault leading predicate and thus we can differentiate a neutral predicate from fault leading predicate. However we also realize that the spectrum distribution for two predicate may have unequal width, directly comparing their inter class distance may not be scientific. For example the predicate that installed for the branch statement of the long loops may have very small evaluation bias value3. So the inter class distance calculate for it can be much smaller than the average. Now if we want to fairly compare the inter class distance between two predicates, we introduce intra class distance. To normalize them before comparison. The intra class distance D_j for the predicate P_j is calculated as:

$$D_j = \frac{\sqrt{\frac{1}{v}\sum_{i=1}^{v}[x(p_i,f_i)-m^f_j]^2} + \sqrt{\frac{1}{u}\sum_{i=1}^{u}[x(p_i,n_i)-m^n_j]^2}}{2}$$

Similarly explained as B_j. Note: it is the mean of intra class distance of P_j for failed and non failed run. Now we can normalized the inter class distance B_j using the intra class distance D_j for each predicate so that their distance can be fairly compared to each other. The normalized inter class distance A_j for p_j is as follows:

$$A_j = \frac{B_j}{D_j}$$

When $D_j=0$ and B_j is not 0 then $A_j=\infty$.

When $D_j=0$ and B_j is also 0 then $A_j=0$.

This step decreases the rank of the neutral predicate without affecting the relative order of the fault leading predicate and fault led predicate.

4 GENERATING A RANK LIST OF SUSPICIOUS PREDICATE:

In previous step, we differentiate neutral predicate with fault leading predicate with the help of normalized inter class distance A_j. Now by integrating the suspiciousness formula S_j as:

$$S_j = 2^{(O_i - A_j)}$$

Since with the great use of O_i we can rule out the fault led predicate and the use of A_j we can suppress neutral predicates. We thus identify fault leading predicate and balanced predicate. At the same time since the normalized inter class distance for fault leading predicate is supposed to be comparable to that of fault led predicate is still reserved by the adjustment of $-A_j$. The base number 2 is to assure that $S_j>0$. Now finally rearrange the predicates in descending order of their suspiciousness score S_j and generate the rank list of predicates.

5 COVERAGE MATRIX BASED REDUCTION (CMR)

5.1 EXECUTION PATH

The execution path of a program P to be a sequence of statements that executes in a program $P = \{p_1, p_2, \ldots, i, \ldots\}$. The P executed by test case t is denoted as $PATH(t)$.

5.2 COVERAGE VECTOR

The coverage vector (binary vector) of test case t is denoted as $COVER(t)$, where $COVER(t)=\langle s_1', s_2', s_3', \ldots, s_n' \rangle$ (n is the number of statements of P). In the program the statements which are execute its value is ‘1’ otherwise ‘0’. $s_j'=1$ such that $PATH(t)$ covered in jth statement or 0, $PATH(t)$ uncovered in jth statement

5.3 COVERAGE MATRIX

Given a target program P, which consists of statements s_1, s_2, \ldots, s_n Let $T = \{t_1, t_2, \ldots, t_m\}$ be a test-suite for P, m be the number of test cases for $P. COVER(T) = COVER(t_1), COVER(t_2), \ldots, COVER(t_m))$

5.4 WEEKLY IRRELEVANT STATEMENT

The statements which are execute in all the test cases are called weakly irrelevant statement because these statement are not give any idea of fault localization that's why we remove those statement and create new vector which is known as $RCOV(T)$. Let $T = \{t_1, t_2, \ldots, t_m\}$ be a test-suite for program P, s_k $(1 \leq k \leq n)$ be one of statements of P. $COVER(T)$ be the statement coverage matrix of P. s_k is a weekly relevant statement of P for the test-suite T, if and only if for all pairs of i and j $(1 \leq i \leq m; j, s_k \in T)$ COVER(i- s_k) = COVER(j- s_k). COVER(i- s_k) is the kth element of $COVER(i)$. By comparing the statistical difference in passed and failed test cases we can measure the dubious score of each statement. Weekly irrelevant statement is executed by all the passed and failed test cases, so the dubious score of weekly relevant statements are relative small. The remaining coverage matrix which does not contain the weekly relevant statements is denoted as $RCOV(T)$, the remaining coverage vector corresponding to test cases ti is denoted as $RCOV(ti)$, and the remaining coverage vector corresponding to fault-localization requirements $FLreq$ is denoted as $RCOV(FLreq)$.

Figure 3
5.5 Fault Localization Requirement Vector (FLreq)
The FLreq is obtained by analyzing the coverage vectors of all failed test cases. Let \(T = \{t_1, t_2, \ldots, t_m\} \) be a failed test-suite for \(P \). The faulty statement should be executed by every failed test case for the localization of a single fault, so the statement executed by all the failed test cases should be included. \(\text{FLreq} = \text{COVER}(t_1) \cap \text{COVER}(t_2) \cap \ldots \cap \text{COVER}(t_m) \). By contrast, for the localization of multiple faults, the program should contain several faulty statements. One failed test case may not execute all of the faulty statements but one faulty statement should be executed by one or more failed test cases, so \(\text{FLreq} = \text{COVER}(t_1) \cup \text{COVER}(t_2) \cup \ldots \cup \text{COVER}(t_m) \).

1 Subject Programs
In our experiment we use the dot net framework to create our experimental model as a tool for the subject program written in C to evaluate the effectiveness and efficiency of our method. We take the example of a program which is to find the mid value of three inputs in our fault localization. This program is having eight test cases for different types of inputs in each test case. The program has numbers of statement and splits into four types of predicate as neutral, fault leading, fault led and balanced predicate.

2 Experimental Process
Before applying our strategy we have done some checked test cases, whose result are passed or failed. The number of these passed or failed test cases can be arbitrary in practice. And then the fault localization requirement is obtained according to failed test cases. To evaluate the effect of coverage matrix based reduction and path vector based reduction on fault localization effectiveness, we design and implement two experiments as follow:

Experiment-1(CMR+PVR): We use coverage matrix based reduction approach to delete the test case which are weekly relevant to fault localization requirements. Then we use path vector based reduction approach to improve the distribution evenness of execution path test cases.

Experiment-2(PVR): For comparison, we only use path vector based reduction approach to get the reduce test-suite.

3 Experimental Results and Analysis
As the result of the work is started to take a program and split it into the predicate based according to their execution of the statement. After that we differentiate the predicate in four parts with its faulty and non faulty statement. To differentiate the predicate we use the Bhattacharya coefficient from their spectrum distribution and then we separate the predicates from inter and intra class distance. The initial step of our model that elaborate how many number of test cases and how many number of fault cover has been entered. Now we perform the test cases reduction technique to reduce the test cases with the coverage matrix based structure to perform the AND operation among the failed test case and the result is then perform with the all passed test cases one by one. First of all entering the values in number of test cases and in number of fault cover and clicking Ok button to get a matrix form of the figure with its test case in rows and cover faults in its columns.
In Figure 8, we give the number of test cases is 7 and the number of fault cover is 8, then clicking Ok button to get coverage matrix and fill all boxes with 0’s and 1’s according to their passed and failed statements and the last test case is fault localization requirement vector (FLreq) which is already the AND operation of failed test cases.

5 RELATED WORK
There is one of the most famous fault localization technique named as Tarantula [9]. In this technique there proportion of failed and passed execution exercising the statement to measure the dubious part of that statement. Naish et al [14] gave a summary for such technique. Now if we comparing such statement level technique, for locating a fault CBI [10] uses predicates as fault indicator. Which gain low complexity and high extensibility? Zhag et al. [21] empirically validate that the short circuiting has effect the predicate based technique and proposed DES [21] accordingly. They also used a non parametric predicate based statistical fault localization framework. For statistical fault localization there is a well-known impact factor is coincidental correctness which causes program runs and trigger the fault, to be marked as non-failed runs. Test suite reduction is one of a solution [8][15] to address coincidental correctness or improve test suite quality [19], but its feasibility relies on the accuracy of recognizing coincidental cases [13]. Our paper proposes a methodology to address coincidental correctness, which does not rely on the accuracy of recognizing them. In this paper, Bhattacharyya coefficient is used to measure the similarity of the predicate spectra between failed runs and non-failed runs, to rule out the faulted predicates. After that inter and intra-class distances are often used in pattern recognition to measure the class difference [16,17].

6 CONCLUSION
In this paper we have presented a technique for calculating the fault localization, which is used to locate the fault in a faulty program and give useful solutions for optimization. The program is divided into four types predicates named as Neutral Predicate, Fault Leading Predicate, Fault led Predicate and Balanced Predicate by dynamic spectra. These predicate are distinguish by their dynamic spectra with inter class distance. The program are executed statement wise in every test cases \((T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8)\) and prepare a coverage matrix by their pass and failed test cases in binary form 0’s and 1’s. We calculate the fault localization requirement vector (FLreq) by performing AND operation of failed test cases and then performs AND operation between FLreq with each passed test cases to get the weekly irrelevant statement \((00000000\) or \(11111111)\). At the end we reduce the test cases \((T_1, T_2, T_3, T_7, T_8)\) where \(T_7\) and \(T_8\) are already failed test cases and faulty so we get \((T_1, T_2, T_3)\) as reduce test case.

REFERENCES

[22] Heng Li, Yuzhen Liu (2014) “Program Structure Aware Fault Localization” State Key Laboratory of Computer Science Institute of Software, Chinese Academy of Sciences Beijing 100190, China North China Electric Power University Beijing 100190, China

[24] Heng Li, Yuzhen Liu, Zhenyu Zhang, Jian Liu (2014) “Program Structure Aware Fault Localization” State Key Laboratory of Computer Science Institute of Software, Chinese Academy of Sciences Beijing 100190, China

[25] Jifeng Xuan, Martin Monperrus (2014) “Test Case Purification for Improving Fault Localization” University of Lille & INRIA Lille, France