
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

22
IJSTR©2015

www.ijstr.org

Query Optimization Techniques - Tips For Writing
Efficient And Faster SQL Queries

Jean HABIMANA

Abstract: SQL statements can be used to retrieve data from any database. If you've worked with databases for any amount of time retrieving
information, it's practically given that you've run into slow running queries. Sometimes the reason for the slow response time is due to the load on the
system, and other times it is because the query is not written to perform as efficiently as possible which is the much more common reason. For better

performance we need to use best, faster and efficient queries. This paper covers how these SQL queries can be optimized for better performance.
Query optimization subject is very wide but we will try to cover the most important points. In this paper I am not focusing on, in- depth analysis of
database but simple query tuning tips & tricks which can be applied to gain immediate performance gain.

————————————————————

I. INTRODUCTION
Query optimization is an important skill for SQL
developers and database administrators (DBAs). In
order to improve the performance of SQL queries,
developers and DBAs need to understand the query
optimizer and the techniques it uses to select an access
path and prepare a query execution plan. Query tuning
involves knowledge of techniques such as cost-based and
heuristic-based optimizers, plus the tools an SQL platform
provides for explaining a query execution plan.The best
way to tune performance is to try to write your queries in a
number of different ways and compare their reads and
execution plans. In this paper I proposed various
techniques that you can use to try to optimize your
database queries.

II. GENERAL TIPS FOR QUERY
OPTIMIZATION
Each tip was tested by running both the original query and
improved query while retrieving information from the Oracle
11g sample database especially on Sales schema. I
recorded the average time of each query to show the speed
increase of using the more efficient query.

Tip #1:
Use Column Names Instead of * in a SELECT
Statement
If you are selecting only a few columns from a table there is
no need to use SELECT *. Though this is easier to write, it
will cost more time for the database to complete the query.
By selecting only the columns you need, you are reducing
the size of the result table, reducing the network traffic and
also in turn boosting the overall performance of the query.

Example:
Original query:
SELECT * FROM SH.Sales;
Improved query:
SELECT s.prod_id FROM SH.sales s;

Tip #2:
Avoid including a HAVING clause in SELECT
statements
The HAVING clause is used to filter the rows after all the
rows are selected and it is used like a filter. It is quite
useless in a SELECT statement. It works by going through
the final result table of the query parsing out the rows that
don’t meet the HAVING condition.

Example:
Original query:
SELECT s.cust_id,count(s.cust_id)
FROM SH.sales s
GROUP BY s.cust_id
HAVING s.cust_id != '1660' AND s.cust_id != '2';
Improved query:
SELECT s.cust_id,count(cust_id)
FROM SH.sales s
WHERE s.cust_id != '1660'
AND s.cust_id !='2'
GROUP BY s.cust_id;

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

23
IJSTR©2015

www.ijstr.org

Tip #3:
Eliminate Unnecessary DISTINCT Conditions
Considering the case of the following example, the
DISTINCT keyword in the original query is unnecessary
because the table_name contains the primary key p.ID,
which is part of the result set.

Example:
Original query:
SELECT DISTINCT * FROM SH.sales s
JOIN SH.customers c
ON s.cust_id= c.cust_id
WHERE c.cust_marital_status = 'single';
Improved query:
SELECT * FROM SH.sales s JOIN
SH.customers c
ON s.cust_id = c.cust_id
WHERE c.cust_marital_status='single';

Tip #4:
Un-nest sub queries
Rewriting nested queries as joins often leads to more
efficient execution and more effective optimization. In
general, sub-query un-nesting is always done for correlated
sub-queries with, at most, one table in the FROM clause,
which are used in ANY, ALL, and EXISTS predicates. A
uncorrelated sub-query, or a sub-query with more than one
table in the FROM clause, is flattened if it can be decided,
based on the query semantics, that the sub-query returns at
most one row.

Example:
Original query:
SELECT *
FROM SH.products p
WHERE p.prod_id =
 (SELECT s.prod_id
 FROM SH.sales s
 WHERE s.cust_id = 100996
 AND s.quantity_sold = 1);
Improved query:
SELECT p.*
FROM SH.products p, sales s
WHERE p.prod_id = s.prod_id
AND s.cust_id = 100996
AND s.quantity_sold = 1;

Tip #5:
Consider using an IN predicate when querying an
indexed column
The IN-list predicate can be exploited for indexed retrieval
and also, the optimizer can sort the IN-list to match the sort
sequence of the index, leading to more efficient retrieval.
Note that the IN-list must contain only constants, or values
that are constant during one execution of the query block,
such as outer references.

Example:
Original query:
SELECT s.*
FROM SH.sales s
WHERE s.prod_id = 14
 OR s.prod_id = 17;
Improved query:
SELECT s.*
FROM SH.sales s
WHERE s.prod_id IN (14, 17);

61% Time

Reduction

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

24
IJSTR©2015

www.ijstr.org

Tip #6:
Use EXISTS instead of DISTINCT when using table
joins that involves tables having one-to-many
relationships
The DISTINCT keyword works by selecting all the columns
in the table then parses out any duplicates.Instead, if you
use sub query with the EXISTS keyword, you can avoid
having to return an entire table.

Example:
Original query:
SELECT DISTINCT c.country_id, c.country_name
FROM SH.countries c,SH.customers e
WHERE e.country_id = c.country_id;
Improved query:
SELECT c.country_id, c.country_name
FROM SH.countries c
WHERE EXISTS (SELECT 'X' FROM SH.customers e
WHERE e.country_id = c.country_id);

Tip #7:
Try to use UNION ALL in place of UNION
The UNION ALL statement is faster than UNION, because
UNION ALL statement does not consider duplicate s, and
UNION statement does look for duplicates in a table while
selection of rows, whether or not they exist.

Example:
Original query:
SELECT cust_id
FROM SH.sales
UNION
SELECT cust_id
FROM customers;
Improved query:
SELECT cust_id
FROM SH.sales
UNION ALL
SELECT cust_id
FROM customers;

Tip #8:
Avoid using OR in join conditions
Any time you place an ‘OR’ in the join condition, the query
will slow down by at least a factor of two.

Example:
Original query:
SELECT *
FROM SH.costs c
 INNER JOIN SH.products p ON c.unit_price =
p.prod_min_price OR c.unit_price = p.prod_list_price;
Improved query:
SELECT *
FROM SH.costs c
 INNER JOIN SH.products p ON c.unit_price =
p.prod_min_price
UNION ALL
SELECT *
FROM SH.costs c
 INNER JOIN SH.products p ON c.unit_price =
p.prod_list_price;

Tip #9:
Avoid functions on the right hand side of the
operator
Functions or methods are used very often with their SQL
queries. Rewriting the query by removing aggregate
functions will increase the performance tremendously.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

25
IJSTR©2015

www.ijstr.org

Example:
Original query:
SELECT *
FROM SH.sales
WHERE EXTRACT (YEAR FROM TO_DATE (time_id, ‘DD-
MON-RR’)) = 2001 AND EXTRACT (MONTH FROM
TO_DATE (time_id, ‘DD-MON-RR’)) =12;
Improved query:
SELECT * FROM SH.sales
WHERE TRUNC (time_id) BETWEEN
TRUNC(TO_DATE(‘12/01/2001’, ’mm/dd/yyyy’)) AND
TRUNC (TO_DATE (‘12/30/2001’,’mm/dd/yyyy’));

Tip #10:
Remove any redundant mathematics

There will be times where you will be performing
mathematics within an SQL statement. They can be a drag
on the performance if written improperly. For each time the
query finds a row it will recalculate the math. So eliminating
any unnecessary math in the statement will make it perform
faster.

Example:
Original query:
SELECT *
FROM SH.sales s
WHERE s.cust_id + 10000 < 35000;
Improved query:
SELECT *
FROM SH.sales s
WHERE s.cust_id < 25000;

III. CONCLUSION
Query optimization is a common task performed by
database administrators and application designers in order
to tune the overall performance of the database system.
The purpose of this paper is to provide SQL scenarios to
serve as a quick and easy reference guide during the
development phase and maintenance of the database
queries. Even if you have a powerful infrastructure, the
performance can be significantly degraded by inefficient
queries. Query optimization has a very big impact on the
performance of a DBMS and it continuously evolves with
new, more sophisticated optimization strategies. So, we
should try to follow the general tips as mentioned above to
get a better performance of queries. Optimization can be
achieved with some efforts if we make it a general practice
to follow the rules. The main focus was on query
optimizations.

IV. REFERENCES
[1] 10 Ways to Improve SQL Query Performance

http://www.developer.com/db/10-ways-to-improve-
sql-query-performance.html

[2] 15 Ways to Optimize Your SQL Queries
http://hungred.com/useful-information/ways-
optimize-sql-queries/

[3] Optimize SQL Server queries with these advanced
tuning techniques.
http://www.techrepublic.com/blog/the-enterprise-
cloud/optimize-sql-server-queries-with-these-
advanced-tuning-techniques/.

[4] Making Queries Run Faster
https://sqlschool.modeanalytics.com/advanced/fast
er-queries.html.

[5] Query Optimization Techniques in Microsoft SQL
Serverhttp://www.dbjournal.ro/archive/16/16_4.pdf

[6] SQL Tuning or SQL Optimization. http://beginner-
sql-tutorial.com/sqlquery-tuning.htm

[7] SQL Server Optimization
Tips.http://santhoshgudise.weebly.com/uploads/8/5
/4/7/8547208/sql_server_optimization_tips-1.doc

http://www.techrepublic.com/blog/the-enterprise-cloud/optimize-sql-server-queries-with-these-advanced-tuning-techniques/
http://www.techrepublic.com/blog/the-enterprise-cloud/optimize-sql-server-queries-with-these-advanced-tuning-techniques/
http://www.techrepublic.com/blog/the-enterprise-cloud/optimize-sql-server-queries-with-these-advanced-tuning-techniques/
https://sqlschool.modeanalytics.com/advanced/faster-queries.html
https://sqlschool.modeanalytics.com/advanced/faster-queries.html
http://www.dbjournal.ro/archive/16/16_4.pdf
http://beginner-sql-tutorial.com/sqlquery-tuning.htm
http://beginner-sql-tutorial.com/sqlquery-tuning.htm
http://santhoshgudise.weebly.com/uploads/8/5/4/7/8547208/sql_server_optimization_tips-1.doc
http://santhoshgudise.weebly.com/uploads/8/5/4/7/8547208/sql_server_optimization_tips-1.doc
http://santhoshgudise.weebly.com/uploads/8/5/4/7/8547208/sql_server_optimization_tips-1.doc

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

26
IJSTR©2015

www.ijstr.org

[8] Efficient SQL Statements https://oracle-

base.com/articles/misc/efficient-sql-statements

[9] Best Way to Write SQL Query.
http://www.ifadey.com/2010/11/best-way-to-write-
sql-query/

[10] SQL Tuning Guidelines for Oracle - Simple yet
Effective!
http://askanantha.blogspot.com/2007/10/sql-
tuning-guidelines-for-oracle-simple.html

[11] What are the most common SQL Optimizations.
http://stackoverflow.com/questions/1332778/what-
are-your-most-commonsql-optimizations

[12] Top 10 performance tuning tips for relational
databases.
http://web.synametrics.com/top10performancetips.
htm

https://oracle-base.com/articles/misc/efficient-sql-statements
https://oracle-base.com/articles/misc/efficient-sql-statements
http://www.ifadey.com/2010/11/best-way-to-write-sql-query/
http://www.ifadey.com/2010/11/best-way-to-write-sql-query/
http://askanantha.blogspot.com/2007/10/sql-tuning-guidelines-for-oracle-simple.html
http://askanantha.blogspot.com/2007/10/sql-tuning-guidelines-for-oracle-simple.html
http://stackoverflow.com/questions/1332778/what-are-your-most-commonsql-optimizations
http://stackoverflow.com/questions/1332778/what-are-your-most-commonsql-optimizations
http://web.synametrics.com/top10performancetips.htm
http://web.synametrics.com/top10performancetips.htm

