
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 10, OCTOBER 2016 ISSN 2277-8616

70
IJSTR©2016
www.ijstr.org

Load Balancing As A Service In Openstack-Liberty

Rashmi T V, Dr. Keshava Prasanna, Mr. Girish L

Abstract: Cloud computing is a technology which provides computing resource on demand over the internet as a service. To meet this, many
opensource cloud operating system are provided for the tenants, in order to get useful services from the cloud. There are many opensource cloud OS
like AWS, Open Shift, HP, OpenStack etc. Out of all these OpenStack comes with free of cost and it has got a huge community. It can be installed and
deploy in private institution or company with free of cost. This paper provides a model and techniques for the dynamic load balancing in OpenStack for
managing the traffic/loads among the Virtual Machines. The main purpose is to increase the utilization of computing resources and minimize the traffic.
Load Balancing as a Service is one of the main service in OpenStack Networking. OpenStack is an opensource platform which provides Infrastructure
as a Service. It allows users/tenants to\create their own private clouds and to deploy Virtual Machines, which manages different workloads. In this paper,
we provide an architecture of openstack LBaaS, for dynamic load balancing in open stack cloud deployment.

Keywords: IaaS, Neutron, Octavia, Load Balancer.

————————————————————

I INTRODUCTION
Cloud computing model makes use of virtualization to provide
computing resources to the users over internet on demand
and pay per use pricing model [1]. Cloud services allow users
to use software and hardware those are set up and handled by
third persons at distributed locations. It leverages the
characteristics of on demand self-service and rapid elasticity
so that it enables customers to dynamically and efficiently
manage their resource usage according to the present
workload conditions. These characteristics of the cloud
computing model allow the users not to invest high on
infrastructure and thereby minimizing the time to market and
provide the space for innovation. Cloud computing resources
are handed over to the users through three basic service
models listed below:
1. Infrastructure as a service (IaaS): IaaS provides access to

the computing resources in the form of virtual machines.
Virtual machine brings the user an aspect of dedicated
physical machine. The user is able to operate the system
within a virtual machine and run the required software.
Examples: Windows Azure, Google Compute Engine,
Amazon EC2.

2. Platform as a Service (PaaS): PaaS provide access to the
computing resources in the form of an application program
interface. It is used by customer to develop and run their
own applications. The user doesn’t have the rights to
access the system recourses. Allocation of resources to
the application is done automatically by platform.
Examples: Microsoft Azure, Google App Engine

3. Software as a Service (SaaS): SaaS provides software
applications as a service to the users on subscription
basis. Users don’t have to bother about installation, setup
and running the software application. Examples: Google
Apps, Microsoft Office 365

In this project, we mainly work on infrastructure as a service
platform. Other than computing service models, cloud
computing services are also classified according to
deployment models. OpenStack Networking (Neutron) [4]
manages all the networking aspects for the Virtual Networking
Infrastructure (VNI) and access the layer aspects of the
Physical Networking Infrastructure (PNI) for the OpenStack.
Networking enables tenants to create advanced virtual
network topologies which may include services such as a
firewall, a load balancer, and a virtual private network (VPN).
Networking also provides networks, [4] subnets, and routers
as object abstractions. Each abstraction has functionality that
mimics its physical counterpart: networks contain subnets, and
routers route traffic between different subnets and networks.
Load balancing is dividing the amount of work that a computer
has to do between two or more computers so that more work
gets done in the same amount of time and, in general, all
users get served faster. Load balancing can be implemented
with hardware, software, or a combination of both. Load
balancing plays an essential role in providing quality of service
(QoS) guarantees in cloud computing, and it has been
generating substantial interest in the research community.
Typically, load balancing is the main reason for computer
server clustering.
 A load balancer is a device that acts as a reverse proxy

and distributes network or application traffic across a
number of servers.

 Load balancers are used to increase capacity (concurrent
users) and reliability of applications.

Cloud Load Balancing is the process of distributing the
workloads across multiple computing environments. Load
balancing helps in fair allocation of computing resource to
achieve a high User satisfaction and proper Resource
utilization. Load balancing is a technique that helped networks
and resources by providing a Maximum throughput with
minimum response time.

II. RELATED WORK

OpenStack
OpenStack is a cloud operating system that controls large
pools of compute, storage, and networking resources
throughout a datacenter, all managed through a dashboard
that gives administrators control while empowering their users
to provision resources through a web interface. OpenStack [3]
project is a cloud operating system that provides software

 Rashmi T V, Dr. Keshava Prasanna, Mr. Girish L

 PG Student, Dept. of CSE, CIT, Gubbi

 Professor, Dept. of CSE, CIT, Gubbi

 Asst.Professor, Dept. of CSE, CIT, Gubbi

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 10, OCTOBER 2016 ISSN 2277-8616

71
IJSTR©2016
www.ijstr.org

tools for managing and building cloud computing platforms. It
controls large pool of services throughout the data centers
through dashboard service. OpenStack [3] allows the clients to
initiate virtual machines and other instances on fly according
to current work load situation with in cloud environment. This is
an open source platform which supports all types of cloud
environment. The main objective is to provide simple
implementation, horizontal scaling and comes with rich set of
features. OpenStack offers an infrastructure as a Service
platform through various complemented services. Offering
IaaS means it is easy for the clients to deploy new instances
upon which other cloud components may execute. It provides
massive scalability which means jobs executing concurrently
can serve users easily on fly by just adding or deleting
instances. All services are accessed through application
programming interfaces that also provide integration between
different services. As this is open source software any one can
make access to the source code, do alterations or
modifications as they need and share the changes made with
other community. All over the world OpenStack developers are
trying to build most solid, secure and robust project they can.

OpenStack Components
OpenStack has a standard architecture with many different
going parts. Due to its open nature, additional components
can be appended to OpenStack by anyone to meet their
requirements. OpenStack community has described some
components that are shown in figure 2 are core part of
OpenStack which are listed and explained as follows.

Fig 2: OpenStack Components. [5]

1) Nova: Nova is a primary OpenStack compute service. It is

used for hosting and managing the cloud compute
instances in an OpenStack environment. It also manages
the life cycle of compute instances. The responsibilities
include spawning, decommissioning and scheduling of
virtual machines on demand.

2) Swift: Swift is storage system provided for objects and
files. Instead of referring the files by their position on disk
drive, they are referred by unique identifier or a piece of
information and then decide where to store the
information. Stores and retrieves unstructured data

objects via RESTful or HTTP based API. It is more faults
tolerant with its data replication and makes the scaling
easy. It provides the system to make sure that data is
backed up in case of network or machine failure.

3) Cinder: Cinder gives block storage as service
functionality. It is more correspondents to traditional notion
of system that access particular locations on the disk
drive. The way of accessing files is very important where
data access speed is important consideration. This
architecture mainly includes API service, scheduler
service and volume service. Its pluggable driver provides
the facility to create and manage block storage devices.

4) Neutron: This project provides networking capability as a
service for other OpenStack services. It facilitates to
ensure that all components within the OpenStack
deployment, can communicate with each other efficiently.
It provides an API for clients to define networks and the
attachments. It also has a pluggable architecture that
supports networking vendors and technologies.

5) Horizon: Horizon is the implementation of dashboard
service. It provides a web based user with self-service
portal to interact with underlying OpenStack services like
Nova, Swift, Keystone etc. It is built in two parts: 1. a set
of libraries that implements dashboard; 2. a reference
dashboard implementation that uses these libraries. Users
can access all OpenStack components through an
application programming interface. Dashboard also helps
the system administrators to keep track what is going
inside cloud and how to manage it.

6) Keystone: Keystone provides authentication and
authorization services for OpenStack. This is the central
list of all the users, represented against the services
provided by cloud environment which users have
permission to use. Developers can have multiple ways of
access so that mapping of user access methods versus
keystone is easy.

7) Glance: This project provides a service where clients can
transfer and describe data assets that are intended to use
with other OpenStack services. This includes metadata
definitions and image services. It also stores and regains
virtual machine disk images. Compute node makes use of
this service during virtual machine provisioning.

8) Ceilometer: The fundamental goal of this project has the
capacity to meter the performance and utilization of cloud
environment. It supervises and measures the OpenStack
cloud for billing, scalability, benchmarking and statistical
purpose [9]. This framework is extensible to accumulate
the usage of other needs.

III. System Design
The proposed system architecture is as shown below. The
load balancer is configured for one of the VM’s in openstack
and it will manage and maintain the load balancing, when it
gets more number of requests. The fundamental objective of
this mission is to give an extensible structure design to
equalize the load among virtual machines; to reduce the load
traffic and to minimize the time. This proposed system uses
neutron as the basic component, which provides the service
called load balancing for controlling and managing the traffic
among serval VMs, using Octavia [11] as a reference model.
Octavia is one of the types of Load Balancer introduced in the
Liberty version of OpenStack.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 10, OCTOBER 2016 ISSN 2277-8616

72
IJSTR©2016
www.ijstr.org

Architecture of Proposed System [12]

The above Figure displays the deployment of Load Balancing
frame work with the openstack clouds. This framework
provides an infrastructure, needed for monitoring the traffic
among the VM’s and to manage the loads equally to all virtual
machines, to get the best working condition. The environment
we are using is IaaS and Load Balancing algorithm to solve
the issues. In Octavia Amphora behaves like a load balancer
and all other components like driver, controller is connected to
each other via amphorae. There are three noteworthy
segments to a load balancer in Neutron
1. Pool member(s): A pool member is a layer 4 question

and is made out of the IP location of an administration and
the listening port of the administration. For instance, a
pool part may be a web server with an arranged IP
address, 10.30.0.2, listening on TCP port 80.

2. Pool(s): A pool is a gathering of pool individuals that
commonly serve indistinguishable substance.

3. Virtual IP(s): A virtual IP, or VIP, is an IP address that
dwells on the heap balancer and listens for approaching
associations. The heap balancer then adjusts customer
associations among the individuals from the related pool.
A virtual IP is typically presented to the Internet and is
frequently mapped to a space name.
 Load balancer [6]: The Cloud Load Balancers

administration incorporates a wellbeing observing
operation that keeps load balancer working easily by
directing movement just to hubs that are working
legitimately.

 Listener [7]: It is a procedure that checks for
association demands. It is designed with a convention
and a port for front-end (customer to load balancer)
associations, and a convention and a port for back-
end (load balancer to backend example) associations.

 Pool [8]: A load adjusting pool is a legitimate
arrangement of gadgets, for example, web servers,

that you aggregate together to get and handle activity.
 Member [9]: A Member is an IP address and port

combination tied to a particular Node.
 Health monitor [10]: The health monitor periodically

checks the health of each node associated with load
balancer, including new nodes that are added. If the
health monitor detects a node that is not responding,
the node is removed from the load balancer rotation
until the health monitor determines that the node is
functional.

The components of the Octavia are as described below:

Driver: This is the part of the load adjusting administration that
really interfaces between the (cleaned) client and
administrator setup and the back-end load adjusting machines
or other "administration providing element‖.

Administrator API Handler: This is precisely similar to the
User API Handler in capacity, with the exception of that usage
subtle elements are presented to the administrator, and certain
administrator level elements are uncovered (ex. posting a
given inhabitant's load balancers, and so forth.)

Controller: This is the segment giving all the summon and
control for the amphorae. Toward the front, it takes its
summons and controls from the LBaaS driver. It ought to be
noticed that in later arrivals of Octavia, the controller
capacities will be part of a few segments. At this stage, we are
less worried about how this inside communication will happen,
and are most worried about guaranteeing correspondence
with amphorae, the amphora LB driver, and the Network driver
are all made as flawless as could be expected under the
circumstances.

Amphora Load Balancer (LB) Driver [11]: This is the
reflection layer that the controller converses with for speaking
with the amphorae an amphora LB driver additionally gives the
administrator the capacity to have diverse open-source
amphorae with possibly distinctive abilities (got to by means of
various flavors) which can be convenient for, for instance,
field-testing another amphora picture.

LB Network: This is the subnet that controllers will use to
speak with amphorae. This implies controllers must have
availability (either layer 2 or steered) to this subnet keeping in
mind the end goal to capacity, and vice versa. Since amphorae
will impact on it, this implies the system is not part of the
"under cloud."

Amphorae: This is a Nova VM which really gives the heap
adjusting administrations as designed by the client.
Obligations of these elements include: Really fulfilling the heap
adjusting administrations for client designed load balancers
utilizing HA proxy.

IV Conclusion
In this work, we have presented the design of source
implementation of LBaaS for monitoring the incoming loads
and it uses the specific algorithms to balance the loads among
the virtual machines. Load adjusting as an administration
furnishes occupants with the capacity to scale their application
automatically through the Neutron API. Clients can adjust

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 10, OCTOBER 2016 ISSN 2277-8616

73
IJSTR©2016
www.ijstr.org

activity to pools, comprising of numerous application servers
and can give high accessibility of their application using clever
wellbeing screens. The proposed structure is straight forward
and flexible for the openstack-Liberty version. The project
outcome shows this model is best suited for all types of test
cases like functional, data driven and it has the capacity to
minimize the load imbalance, and to provide high availability
and L7 content Switching.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.
Stoica, and others, ―A view of cloud computing,‖
Communications of the ACM, vol. 53, pp. 50–58,
2010.

[2] Gulshan Soni, Mala Kalra. ―Comparative study of live

virtual machine migration techniques in cloud‖, vol.
84-No 14. December 2013.

[3] http://www.openstack.org/software/

[4] Networking- this can be found at

https://developer.rackspace.com/blog/neutronnetworki
ng-the-building-blocks-of-an-openstackcloud/

[5] openstack components can be found at

www.openstack.architecture

[6] The explanation of this can be seen in
technet.microsoft.com

[7] The documentation of listener can be seen at

docs.aws.amazon.com

[8] The explanation with respect to Pool of LB can be
found ataccess.redhat.com/documentation

[9] This document can be found at

access.redhat.com/documentation

[10] http://docs.openstack.org/liberty/networkingguide/adv-

configlbaas.html

[11] The explanation of Octavia can be found at

http://www.octavia.io/review/master/design/version0.5
/component-design.html

[12] The proposed architecture is adopted from LBaaS

integration and Octavia Components.

