Structural Analysis and Hydrogen Bonding Interactions on Pirimor and Water Mixture by Density Functional Theory

L.S. Anju, V.K. Suma, D. Aruldhas

Abstract-The geometrical parameters, different inter and intra molecular interactions of pirimor (PRM) and its water complex (PRM.3H₂O) have been performed using density functional theory (DFT) method with 6-31G(d) basis set. Charge analysis and Hirshfeld analysis reveals the charge transfer within the molecule. HOMO-LUMO energy gap, local softness and electrophlicity indices for selected atomic sites of the PRM and its water-complex were determined.

Key Words- Bioactivity, Hirshfeld analysis, Pirimor, Water mixture.

1. INTRODUCTION

Pyrimidine ring and its derivatives are known for their biological and pharmaceutical importance. Their properties are determined by hydrogen bonding and π – bonding systems. They belong to the family of nucleic acid. Pyrimidine and its derivatives have immense importance as antibiotics, and as crucial parts of many vitamins, and coenzymes. Pyrimidine-derived biomolecules have received much attention from spectroscopists, drug, clinical, and industrial researchers because of their therapeutic importance [1]. The present work gives a detailed structural analysis on Pirimor (PRM). It is used specifically to target insects and is applied as a foliar spray to infested plant material. The mode of action of Pirimor is that it inhibits acetylcholinesterase (AChE), thereby disrupting the neutral pathways of the insect. Pirimor is also found in formulation with many other insecticides. In this study, the structures of PRM.3H₂O complex formed by the hydrogen bonding interaction between PRM and three water molecules were studied. The energetic, vibrational frequencies of H-bonds were investigated. The natural bond orbital (NBO) analysis has been carried out to interpret hydrogen bonding, hyperconjugative interaction and intramolecular charge transfer (ICT). The calculated value of HOMO-LUMO energy gap is used to interpret the biological activity of the molecule [2]. Hydrogen bonding and hyperconjucative interactions have received much attention from both experimental and theoretical perspectives as they can determine the structures and biological activity of molecules.

2. COMPUTATIONAL DETAILS

The structural analysis and spectroscopic studies of PRM and PRM.3H₂O were performed using Beck3-Lee-Yang-Parr (B3LYP) with 6-31G(d) basis set using GAUSSIAN 09 program package [3] without any constraint on the geometry. The optimized geometry corresponding to the minimum potential surface has been obtained by solving self-consistent field equation iteratively. The natural charges analysis interpret Atomic charges, donor-acceptor NBO hyperconjugative interactions, dipole moment, HOMO-LUMO energy gap were also computed [4]. Hirshfeld surface analysis of PRM has been constructed from CIF files in order to identify the interactions using crystal explorer 3.1[5].Gaussview.5.0.8 visualization program has been utilized to the shape of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO).

3. RESULT AND DISCUSSION

3.1 OPTIMIZED GEOMETRY

The optimized geometrical parameters of Pirimor (PRM) and its water complex (PRM. $3H_2O$) were calculated by B3LYP with 6-31G(d) basis set. The results of the calculated geometrical parameters (bond length, bond angle and dihedral angle) are compared with the experimental values and are

L.S Anju- ^aResearch Scholar, Register Number: 12049, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu, India. E-mail:anju.ls2007@gmail.com

V.K. Suma- ^aResearch Scholar, Register Number:11808, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli - 627 012, Tamil Nadu

D.Aruldhas- ^{a, a*}Department of Physics& Research Centre, Nesamony Memorial Christian College, Marthandam 629 165, Tamilnadu, India.

listed in table 1. The optimized molecular structures with atom numbering scheme adopted in the computation is shown in fig.1

TABLE 1: STRUCTURAL PARAMETERS OF HYDROGEN
BONDS IN PRM.3H ₂ O COMPLEX

	H-bond	R_{X-H}	$\Delta R_{\text{X-H}}$	R _{HY}	$\delta R_{H\ldots Y}$	<x-hy< th=""></x-hy<>
	C1-H3O42	1.089	-0.01	2.502	0.398	156.4
	C6-H8011	1.089	0	2.341	0.559	102.6
PRM.3H 2O	C28- H31N16	1.088	0	2.311	0.042	102.8
	C32- H33N18	1.097	0.009	2.858	0.808	70.5
	C28- H30N19	1.096	0	2.092	0.781	40.9
	C28- H29N19	1.100	0.002	2.119	0.796	37.7
	C32- H34N19	1.092	-0.009	2.104	0.821	40.7
	O36-H38N5	0.969	0	4.032	0.743	81.5
	O39- H41C12	0.971	0.002	2.063	0.657	165.7
	C24- H25O39	1.098	0.006	2.545	0.355	53.2
	С6-Н7О42	1.094	-0.005	2.516	0.384	152.7
	C1-H3	1.099				
	C6-H7	1.099				
PRM	C6-H8	1.089				
	C28-H31	1.088				
	С32-Н33	1.088				
	C28-H29	1.098				
	С32-Н34	1.101				
	C24-H25	1.092				
H2O	O-H	0.969				

In PRM, the bond length of C_6 -H₈ in methyl group 2 decreases while comparing with other methyl groups, which indicates the presence of C_6 -H₈...O₁₁ hydrogen bonding. Similarly, C₁-H₄ bond length in methyl group 1 is decreased due to the presence of C₁-H₄...O₁₂ hydrogen bonding. The C-N bond length N₁₆-C₁₇ (1.350) is increased due to the presence of weak intermolecular hydrogen bonding C₂₈-H₃₁...N₁₆. The existence of methyl group 5 and 6 provide the additional negative charge to the amino nitrogen atom resulting the contraction of bond length C₁₇-N₁₉. Comparing with other three compounds the C₁₅-C₂₀ bond length increases due to

steric hindrance of $H_{23}...H_{26}$ (2.518). The bond length of C_{14} - C_{13} increases when compared with other three compounds shows the substitution of methyl group 4. The dihedral angle C_{10} - O_{12} - C_{13} - C_{14} shows the crabamate group is non-planar with the pyrimidine ring . N_{18} - C_{17} - N_{19} - C_{28} (-1.7° and 6.8°) showing that the dimethyl amino group in nonplanar with the pyrimidine ring. Thus the compound pyrimidine is nonplanar in nature.

In PRM.3H₂O the C₁-H₃ bond length increased $(0.004A^0)$ increased due to C₁-H₂...O₄₂ hydrogen bonding interaction. In PRM.3H₂O complex C₆-H₇ bond length is increased when compared with PRM due to the influence of C₇-H₈...O₄₂^w hydrogen bonding interaction. Due to C₃₂-H₃₄...N₁₉^w hydrogen bonding interaction the C₃₂-C₃₄ bond length is decreased in PRM.3H₂O complex compared with PRM.

3.2 VIBRATIONAL FREQUENCIES

The harmonic vibrational wave numbers and their shifts calculated at the B3LYP/6-31G(d) level listed in table 2. The red shift in the X-H stretching vibrational frequency has been widely used important intermolecular hydrogen bonding interaction. A shift to lower frequency relative to reference state is called a red shift. Contrarily, a shift to higher frequency is called a blue shift [6]. The larger shift value indicates the stronger H-bond interactions. The shifting of X-H stretching vibrational modes mix with other vibrational modes.

HYDROGEN BONDS						
Compound	H-bond	υX-H	$\Delta v(X-H)$			
	C1-					
	H3O42 ^w	$3063_{(asy)}$	10			
		2939 _(sv)	29			
PRM.3H2O	C6-H8011	$3073_{(asy)}$	2			
		2924 _(sv)	6			
	C32-					
	H33N18	3027 _(asy)	-44			
		2930 _(sy)	29			
	C28-					
	H29N19	3072 _(asy)	-4			
		2907 _(sy)	-3			
	O36-					
	H37 ^w N18	3662 _(asy)	-39			
		3526 _(sy)	-60			
	O39-					
	H41 ^w C12	3678 _(asy)	-23			
		3571 _(sy)	-15			
	C24-					
	H25O39 ^w	3052 _(asy)	17			
		2923	4			
	C1-H3	3053 _(asy)				
		2910 _(sy)				
PRM	C6-H8	3071 _(asy)				
		2918 _(sy)				
	C32-H33	3071 _(asy)				
		2901 _(sy)				
	C28-H29	3076 _(asy)				
	~	2910 _(sy)				
	C24-H25	3035 _(asy)				
		2919 _(sy)				
	OH	3701 _(asy)				
H2O		$3586_{(sv)}$				

Table 2: THE VIBRATIONAL WAVE NUMBER OF PRM
and PRM.3H ₂ O COMPLEX CORRESPONDING

The intramolecular C_8 - H_{15} ... N_{18} hydrogen bonding interaction in PRM leads to the mixture of C-H stretching with pyrimidine ring stretching modes. In PRM.3H₂O complex the Δv_{X-H} value of intermolecular hydrogen bonding interaction red shifted about 44 cm⁻¹ due to the strong O_{36} - H_{37} ... N^{18} intermolecular hydrogen bonding interaction. The C₁- H_3 ... O_{11} hydrogen bonding interaction have blue shifted about 10 cm⁻¹. In other red shifted hydrogen bonding interaction are C₂₈- H_{29} ... N_{19} , O_{36} - H_{37} ... N_{18} and O_{39} - H_{41} ... C_{12} was supported by NBO and structural analysis.

3.3 NATURAL BOND ANALYSIS

The natural bond orbitals (NBO) calculations were performed using NBO 3.1 program as implemented in the Gaussian 09 package at the B3LYP 631-G(d) level in order to understand various second-order interactions between the filled orbitals of one subsystem and vacant orbitals of another subsystem, which is a measure of the intramolecular delocalization or hyper conjugation.

The second-order Fock-matrix was carried out to evaluate the donor-acceptor interactions in the NBO basis. The interactions result in a loss of occupancy from the localized NBO of the idealized Lewis structure into an empty non-Lewis orbital. For each donor (i) and acceptor (j) the stabilization energy $E^{(2)}$ associated with the delocalization $i \rightarrow j$ is determined as

$$E^{(2)} = \Delta E_{ij} = q_i \frac{F_{ij}^2}{(E_i - E_j)}$$

where, q_i - donor orbital occupancy

E_i, E_j - diagonal elements

F_{ij} - the off diagonal NBO Fock matrix element.

NBO analysis provides the most accurate possible 'natural Lewis structure' picture of 'j' because all orbital details are mathematically chosen to include the highest possible percentage of the electron density. A useful aspect of the NBO method is that it gives information about interactions of both filled and virtual orbital spaces that could enhance the analysis of intra and inter molecular interactions. The electron density of conjugated single as well as double bond of pyrimidine ring about 1.976 - 1.987e clearly demonstrate strong delocalization for Pirimor. The intermolecular interaction are formed by the orbital overlap between $\sigma(N-C) \rightarrow \sigma^*(O-C)$. $\sigma(C-C) \rightarrow \sigma^*(C-C)\sigma(C-N) \rightarrow \sigma^*(C-N)$ and $\sigma(C-N) \rightarrow \sigma^*(N-C)$ bond orbital which orbital which results intramolecular charge transfer (ICT) causing stabilization of the system as seen from the table 3. The stabilization energy contributions from the $\sigma(C_{13}-C_{14}) \rightarrow \sigma^*(C_{10}-O_{12})$ interaction is 8.24kJ/mol. The hydrogen bonding interaction between the oxygen cone pair and (C-H) antibonding.ie, σ (O₁₁) $\rightarrow \sigma^*$ (C₆-H₈) increases the C_6 -H₈ bond.

ISSN 2277-8616

TABLE 3: SECOND ORDER PERTURBATION THEORY ANALYSIS OF FOCK MATRIX IN NBO BASIS CORRESPONDING TO THE INTRA MOLECULAR HYDROGEN BONDS AND HYPERCONJUGATION IN PRM AND PRM.3H₂O COMPLEX INTRACTION ENERGIES (E2) IN KJ MOL⁻¹ WITH HYBRID ORBITALS AND ELECTRON DENSITY(E.D) between cone pairs (N_{16}) to antibonding $\sigma^*(C_{28}\text{-}H_{31})$ (8.242 kJ/mol) have been confirmed by the results of NBO analysis.

3.4 CHARGE ANALYSIS

All hydrogen atoms have positive charge. Hydrogen in methyl group is more positive than hydrogen in ring. The largest positive charge occurs at H_{33} in PRM, which are involved in C_{32} - $\overline{H_{33}...N_{18}}$ hydrogen bonding with atomic charges of 0.263e.

Complex	H-bond	RX-H	∆RX-H	RHY	δRHY	$H_{33}N_{18}$	hydrogen b	onding with atom	c charges of 0.263e.
	C1-H3O42	1.089	-0.01	2.502	.980	_	TABL	E 4: CHARGE	ANALYSIS TABLE
	C6-H8O11	1.089	0	2.341	0.559		Atom	Natur	al Charge
PRM. 3H2O	C28-H31N16	1.088	0	2.311	0.042		7 ttolii	PRM	PRM.3H ₂ O
	C32-H33N18	1.097	0.009	2.858	0.808	_	C1	-0.469	-0.464
	C28-H30N19	1.096	0	2.092	0.781		H2	0.222	0.228
	C28-H29N19	1.1	0.002	2.119	0.796		H3	0.219	0.229
	C32-H34N19	1.092	-0.009	2.104	0.821		H4	0.257	0.24
	O36-H38N5	0.969	0	4.032	0.743		N5	-0.488	-0.489
	O39-H41C12	0.971	0.002				C6	2.063 -0.469 0.657	-0.482
	C24-H25O39	1.098	0.006				H7	2.545 0.22 0.355	0.222
	С6-Н7О42	1.094	-0.005				H8	$2.516 \stackrel{0.263}{-0.384}$	0.259
	C1-H3	1.099					H9	0.218	0.231
	C6-H7	1.099					C10	0.948	0.935
PRM	C6-H8	1 089					011	-0.631	-0.628
1100	C28-H31	1.088					O12	-0.578	-0.585
	C22-1131	1.000					C13	0.587	0.585
	C32-H33	1.000					C14	-0.178	-0.176
	C28-H29	1.098					C15	0.284	0.288
	C32-H34	1.101					N16	-0.555	-0.551
	C24-H25	1.092					C17	0.621	0.623
H2O	O-H	0.969					N18	-0.559	-0.573
							N19	-0.436	-0.434
The shore	tening of C_6 -H ₈ is	due to C	-HO hy	ydrogen	bonding		C20	-0.706	-0.707
having s	tabilization energy	y 4.184 H	KJ/mol. T	he existe	ence of		H21	0.255	0.256
weak i	ntermolecular C-	HO h	ydrogen	bond o	due to		H22	0.245	0.246
interactio	n between lone p	airs of σ ((O_{12}) with	(C ₁ -H ₄)	(26.359		H23	0.242	0.245
kJ/mol)	have confirmed.	The corres	ponding	intra-m	olecular		C24	-0.691	-0.679
HO di	stance (H ₈ O ₁₁)/	(H ₄ O ₁₂)	is found	l to be 2.	309 and		H25	0.253	0.229
2.235Å.	These distances are	e significa	ntly short	ten than	that of		H26	0.24	0.243
Vander v	vaals seperation h	between th	e oxyger	atom a	and the		H27	0.237	0.251
hydrogen	atom (2.720Å)	indicating	the existe	ence of	С-НО		C28	-0.469	-0.469
interactio	n [7] The inter	action C	H N hy	drogen	bonding		H29	0.218	0.22
meractio	m [/]. The inter-		111v IIY	ulogen	oonung		H30	0.213	0.214

H31	0.262	0.263
C32	-0.469	-0.459
H33	0.264	0.245
H34	0.212	0.216
H35	0.22	0.226

In PRM.3H₂O largest positive charge occurs at H₃₁ due to C_{28} -H₃₁...N₁₆ hydrogen bonding interaction. Charge of N₁₈ is decreased by the influence of C_{25} -H₂₆...N₁₈ hyperconjugative interaction. It is worthy to mention that C₁₀, C₁₃, C₁₇ and C₁₅ atoms exhibit positive charge while other carbon atoms exhibit negative charge. The more negative values on C₂₀ and C₂₄ of CH₃ group leads to a redistribution of electron density and also influenced by H_{23...}H₂₇ steric repulsion. The negative charges located at atoms O₁₁ and O₁₂ will interact with C₁₀ and C₁₃ atoms due to inductive effect the bond distance N₅-C₁₀ (1.364A°) increases. The presence of two large electronegative oxygn atom and one nitrogen atom impose very high charge on carbon atom (C₁₀) in the carbamate group.

3.5 HIRSHFELD SURFACE ANALYSIS

The Hirshfeld surface analysis, a unique new method of visualizing the intra molecular interaction, was performed in order to explore the properties of all inter contacts within the crystal structure of PRM. Additionally corresponding twodimensional (2-D) fingerprint plots [8] provide rapid quantitative summary of them (the percentage of each contact), which is important for understanding of the contribution of intra molecular interactions to the crystal packing. This plot provides information not only about close contacts, but also about more distant contacts and areas where the interactions are the weakest. Hirshfeld surface display all of the inter contacts within the crystal at once and are therefore ideal for analyzing the crystal packing. The molecular Hirshfeld surface were constructed on both de (external distance that is the distance between the Hirshfeld Surface and the nearest atom of an adjacent molecule.), d_i (internal distance that is the distance from the nearest nucleus internal to the calculated Hirshfeld surface and the vanderWaals radii of the atom, enabling identification based on the electron distribution calculated as the sum of spherical atom electron densities [9]. The Hirshfeld

surfaces of PRM crystal structure have been mapped over. The d_e 1.000 to 2.650 A^0 , the d_i is 0.961 to 2.650 A^0 , d_{norm} is -0.271 to 1.226 A^0 for PRM. Fig represents the d_{norm} , d_i , d_e , shape index and curvedness of PRM. The shape index and curvedness surfaces have been shown to give the information about each donor-acceptor pair and to measure how much effectively divides the surfaces into set of patches respectively.is shown in fig 2. Fingerprint plots give an idea about interactions with in the molecule.

3.6 HOMO LUMO ANALYSIS

According to the frontier molecular orbital theory (FMO) of chemical reactivity, transition of electron is due to interaction between highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of reacting species [10]. E_{HOMO} is a quantum chemical parameter which is often associated with the electron donating ability of the molecule. High value of E_{HOMO} is likely to a tendency of the molecule to donate electrons to appropriate acceptor molecule of low empty molecular orbital energy [11].

The molecule interacts with other species; hence, they are called the Frontier molecular orbitals (FMO's). HOMO, which can be thought the outermost orbital containing electrons, tends to act as electron donor. On the other hand, LUMO can be thought the innermost orbital containing free places to accept electrons. To explain several types of reactions and for predicting the most reactive position in conjugated systems, molecular orbital and their properties are used. A molecule having a small frontier orbital gap is more polarizable and is generally associated with a high chemical reactivity and low kinetic stability [12]

The plots of MO's (HOMO and LUMO) are shown in fig.3 and its energy values are given in table 5. All the HOMO and LUMO have nodes. The nodes in each HOMO and LUMO are placed symmetrically. The positive phase is red and the negative is green. In the title compound, the HOMO is delocalized over the carbamate group. By contrast, the LUMO is located over the dimethyl amino pyrimidine.

Global Reactivity Descriptors

By using HOMO and LUMO energy values of a molecule, the global chemical reactivity descriptor of molecules such as hardness, chemical potential, softness, electronegativity and electrophilicity index as well as local reactivity have been defined [13]. The HOMO and LUMO energies, the energy gap (E), ionization potential (I), electron affinity (A), absolute electronegativity (χ) absolute hardness (η),and softness of title compound and its related compounds computed by DFT/B3LYP/6-31G(d) level.

The chemical potential provide a global reactivity index and related to charge transfer from a system of higher chemical potential to lower chemical potential. The reactivity index is the measure of stabilization in energy when the system acquires an additional electronic charge (N). A molecule or atom that has a positive electron affinity is often called an electron acceptor and may undergo charge transfer reactions. The electron donating power of a donor molecule is measured by its ionization potential which is the energy required to remove an electron from the highest occupied molecular orbital. The overall energy balance (ΔE), i.e., energy gained or lost, in an electron donor acceptor transfer is determined by the difference between the acceptor's electron affinity (EA) and the ionization potential (IP) as $\Delta E = EA-IP$. Electronegativity is a chemical property that describes the ability of an atom or a functional group to attract electrons or electron density towards itself. Parr et al. have proposed electrophilicity index (ω) as a measure of energy lowering due to maximal electron flow between donor and acceptor [14]. The usefulness of this new reactivity quantity has been recently demonstrated understanding the toxicity of various pollutants in terms of their reactivity and site selectivity. The electrophilicity index is positive, definite quantity and direction of the charge transfer is fully determined by the chemical potential (V) of the molecule. Because an electrophile is a chemical species, it has an electron accepting capability from the environment and its energy must decrease upon accepting electronic charge, therefore, its electronic chemical potential must be negative. Using Koopman's theorem for closed shell compounds the electronegativity and chemical hardness can be calculated as follows:

> Electronegativity, $\chi = -\frac{1}{2}(E_{LUMO} + E_{HOMO})$ Chemical reactivity, $\eta = \frac{1}{2}(E_{LUMO} - E_{HOMO})$

Softness, $\sigma = 1/\eta$

Electrophilicity index, $\omega = \mu^2 / 2\eta$

where I and A are Ionisation Potential and Electron Affinity. Large HOMO-LUMO gap means a hard molecule and small HOMO-LUMO gap means a soft molecule. One can also relate the stability of the molecule to hardness, which means that the molecule with least HOMO-LUMO gap means it is more reactive.

The usefulness of this new reactivity quantitivity has been recently demonstrated in understanding the toxicity of various pollutants in terms of their reactivity and site selectivity [15]. The calculated parameters are shown in Table.5. Global softness 0.271 shows more chemical active nature of PRM, and electrophilicity index 11.744, which shows more bio active nature of PRM.3H₂O complex while comparing with PRM while comparing with PRM.3H₂O.

TABLE 5: CALCULATED GLOBAL PARAMETERS

	PRM	PRM.3H ₂ O
Ionization Potential (I)	8.453	8.42
Electron Affinity (A)	4.705	4.736
Electro negativity (χ)	-6.579	-6.578
Chemical potential (η)	6.579	6.578
Hardness	1.874	1.842
Softness	0.267	0.271
electrophilicity index (ω)	11.547	11.744

CONCLUSION

The present study has been performed on Pirimor its water complex (PRM.3H₂O) to investigate the intermolecular hydrogen bonding interaction to show the insecticidal activity. The theoretically predicted optimized geometry of Pirimor and its related compounds by DFT method suggests the possibility of intermolecular C-H...O and C-H...N hydrogen bonding. The stretching vibration of dimethyl amino group shows a blue shift due to the C-H...N hydrogen bonding. The lowering of Homo-Lumo energy gap of Pirimor while compairing with PRM.3H₂O indicate the charge transfer. The carbon atom in carbamate group (C_{10}) shows more positive charge which shows charge transfer from carbamate to dimethyl amino pyrimidine group. NBO analysis confirms the possibility of C-H...O and C-H...N hydrogen bonding. The experimental and theoretical vibarational, NBO, HOMO-LUMO energy gap, global softness and electrophilicity index shows more insecticidal activity of PRM.3H2O in comparison with Pirimor compound.

REFERENCES

- V. Balachandran, A. Lakshmi, A. Janaki, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 81 (2011) 1-7.
- [2] Mariana Rocha, Alejandro Di Santo, Juan Marcelo Arias, Diego M. Gil,Aída Ben Altabef, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, S1386-1425(14)01435-8doi:10.1016/j.saa.2014.09.077.
- [3] M.Amalanathan, I.Hubrt Joe, V.K.Rastogi, Journal of Molecular Structure 985(2011) 48-56.
- [4] Rong Zhang, Haoran Li, Yi Lei, Shijun Han, Journal of Molecular Structure 693 (2004) 17–25.

- [5] Hojin Yang, Tae Ho Kim, Yong Woon ShinKi-Min, Park and Jineun Kim, Acta Cryst. (2010). E66, 01998.
- [6] P. Hobza, Z. Havlas, Chem. Rev. 100 (2000) 4253.
- [7] V.Santhana Krishnan,S.Sampath Krishnan,S.Muthu, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 115 (2013) 191–201.
- [8] Jack D.Dunitz, Angelo Gavezzotti, Chem.Soc.Rev. 2009,38,2622-2633.
- [9] Saikat Kumar Singh, Journal of molecular structure 1064 (2014) 70-75.
- [10] C.Ravikumar, L.Padmaja, I.Hubert Joe, Spectrochimica Acta Part A 75(2010) 859-866.
- [11] Lynnette Joseph, D.Sajan, K.Chaitanya, Jayakumary Isac, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 122(2014)375-380.
- [12] A.Natraj, V.Balachandran, T.Karthick, Journal of molecular structure 1022 (2012)94-108.
- [13] Wajdi.M.Zoghaib,John Husband,Usama A.Soliman, Ibrahim A Shaaban, Tarek A.Mohemed, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 105(2013) 446-455.
- [14] Sameh Guidara, Habib Feki, Younes Abid, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 133 (2014) 856-866.
- [15] D. Arul Dhas; I. Hubert Joe; S.D.D. Roy; S. Balachandran, Spectrochimica Acta Part A 79 (2011) 993– 1003.
 10.1016/j.saa.2011.04.011.