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Abstract: A simple replication-based mechanism has been used to achieve high data reliability of Hadoop Distributed File System (HDFS). However, 
replication based mechanisms have high degree of disk storage requirement since it makes copies of full block without consideration of storage size. 
Studies have shown that erasure-coding mechanism can provide more storage space when used as an alternative to replication. Also, it can increase 
write throughput compared to replication mechanism. To improve both space efficiency and I/O performance of the HDFS while preserving the same 
data reliability level, we propose HDFS+, an erasure coding based Hadoop Distributed File System. The proposed scheme writes a full block on the 
primary DataNode and then performs erasure coding with Vandermonde-based Reed-Solomon algorithm that divides data into m data fragments and 
encode them into ndata fragments (n>m), which are saved in N distinct DataNodes such that the original object can be reconstructed from any m 
fragments. The experimental results show that our scheme can save up to 33% of storage space while outperforming the original scheme in write 
performance by 1.4 times. Our scheme provides the same read performance as the original scheme as long as data can be read from the primary 
DataNode even under single-node or double-node failure. Otherwise, the read performance of the HDFS+ decreases to some extent. However, as the 
number of fragments increases, we show that the performance degradation becomes negligible. 
 
Index Terms: Erasure coding, Hadoop, HDFS, I/O performance, node failure, replication, space efficiency. 

———————————————————— 

 

1 INTRODUCTION 
The tremendous advances in networking, storage capacity 
and processing speed of computing devices in the last decade 
have given rise to new applications which involves accessing 
and storing thousands of gigabytes of data [1, 2]. Hadoop [3, 
4] is a popular open-source implementation of MapReduce [5] 
framework designed to analyze large data sets.  It has two 
parts; Hadoop Distributed File System (HDFS) [6, 7] and 
MapReduce. HDFS is the file system used by Hadoop to store 
its data. It has become popular due to its reliability, scalability, 
and low-cost storage capability.  HDFS is designed to operate 
on commodity hardware components, which are prone to 
failure. Files are triplicated (triple replication) to guarantee high 
data reliability. The higher value of replication factor helps 
HDFS to be highly fault tolerance and to increase read 
bandwidth.  HDFS’s triplication policy enables the tolerance of 
two node failures at maximum on its default configuration. 
However, it increases the storage overhead three times. An 
alternative efficient way to provide the same data reliability 
while reducing the storage overhead is to use erasure codes 
[9, 11, 12, 13, 14, 15]. Erasure codes store data objects as 
equations thus reducing much of the storage cost. Moreover, 
with erasure codes, I/O performance can be improved as it 
reduces bandwidth overhead of redundancy. In this paper, we 
design and implement HDFS+ by replacing triple replication of 
HDFS with erasure codes, and evaluate its performance in 
terms of space efficiency and I/O compared to the HDFS’s 
scheme. The rest of the paper is organized as follows: We 
start by providing some related work in section II. Section III is 
dedicated to the background of the study. The proposed 
scheme is presented in section IV. In section V, we provide the 
implementation and performance evaluation is presented in 
section VI. We finalize with conclusion and future work in 
section VII. 

 

2 RELATED WORK  
DiskReduce [8] framework proposed by Fan et al, integrates 
HDFS with RAID for reducing storage overhead. In 
DiskReduce, the write operation follows the HDFS’s scheme of 
triple data replication and later RAID encoding process is 
performed in the background. The system collects k different 
blocks into a RAID set and m encoding blocks are calculated, 

and all (k+m) blocks are saved in different DataNodes. After 
encoding, the number of data copies is reduced from three 
copies to one copy. Microsoft [10] integrated HDFS with 
erasure codes and introduced new power proportionality and 
complexity tradeoffs. The system waits to receive m blocks, 
before calculating and writing (n-m) parity blocks. The scheme 
is designed to perform erasure coding online in the data center 
environment. Hendricks et al. [17] introduced a Byzantine 
fault-tolerant protocol and shows that erasure coding based 
mechanism can achieve higher write throughput compared to 
replication-based mechanisms for a distributed storage 
system. Maheswaran et al [18] proposed and implemented a 
new set of erasure codes on Hadoop HDFS with the aim of 
overcoming the limitation of high repair cost of Reed-Solomon 
codes. The study shows a reduction of approximately 2x on 
the repair disk I/O and repair network traffic. However, this 
coding requires 14% more storage compared to Reed-
Solomon codes. 

 

3 BACKGROUND  
In this section, we shall present basic concepts that are 
essential to our work. 

 

3.1 Hadoop Distributed File System 
The HDFS architecture consists of the following components: 
NameNode, DataNode and Client as shown in figure 3. 
NameNode is a central server that controls the Hadoop 
cluster. It keeps data structures that map a block to a filename 
(Namespace) and a block to a DataNode (Inode). It also 
executes namespace operations of the file system like 
opening, closing and renaming files and directories. DataNode 
is a node that stores HDFS blocks and acts as a slave to the 
NameNode. In HDFS, a file is broken down into one or more 
blocks and these blocks are stored in the collection of 
DataNodes. DataNode acts according to commands received 
from the NameNode such as replicating a block or deleting 
over replicated block also read and write request from the 
Client. DataNode is required to send heartbeat and block 
report to the NameNode in a regular interval. NameNode uses 
the received report to verify the file system metadata and 
block map. The Client is responsible for sending write and 
read request to the NameNode using the Client Protocol. 
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When a red or write request is sent to the NameNode, 
NameNode returns DataNode address information to the 
Client. For the write request, Client writes the blocks orderly to 
the DataNodes and for the read request, the Client retrieve the 
data from the list of DataNodes given by the NameNode. Data 
transfer between the Client and the DataNode is done using 
Data Transfer Protocol as shown in figure 3. 

 

3.1.1 Write Operation  
The write operation for the HDFS is shown in figure 1 for the 
Hadoop cluster having three DataNodes with default settings. 
The steps are as follows: (1) A block to be written into HDSF is 
initially cached in a temporary local file until at least one HDFS 
block size is reached, and then a write request is sent to the 
NameNode. (2) NameNode generates blockid, find and 
returns a list of DataNodes for saving the data to the Client.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 HDFS write with default 3-way replication 
 

(3) The Client writes the block to the first DataNode as shown 
in figure 1. (4) The first DataNode sends the block to the 
second DataNode in the pipeline, and the second DataNode 
passes it to the third DataNode. (5) In a regular time interval 
NameNode keep receiving a Blockreport and a Heartbeat from 
each of the DataNodes in the cluster.   

 

3.1.2 Read Operation  
The read operation for the HDFS is shown in figure 2 for the 
Hadoop cluster having three DataNodes with default settings. 
It has the following steps: (1) When the Client wants to read a 
file; it sends a read request to the NameNode. (2) NameNode 
locates the file, find all its blocks (using file to block mapping), 
find the DataNodes having these blocks, order the DataNodes 
according to the distance from the Client and provide a list of 
DataNodes to the Client as shown in figure 2. (3) The Client 
communicates with the nearest DataNodes to retrieve data. 
(4) If it cannot retrieve the data from the first DataNode then it 
will try from the next DataNode in the list as shown in figure 2.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2 HDFS read with default 3-way replication 

 

3.2 Erasure Coding 
A Maximum Distance Separable (MDS) erasure code 𝑛 , 𝑘   
[11] or simply k-of-n code, takes 𝑛  storage nodes, 𝑘  of these 

holds data and 𝑚  coding information, such that 𝑛  can be 

reconstructed up to when  𝑛 − 𝑘   nodes fails without data 

loss. The node failures are named as erasures. Reed-
Solomon (RS) codes [16] are standard MDS codes that are 
obtained by evaluating polynomials over a finite field. 
Vandermonde-based RS code uses linear algebra in its 
encoding process where 𝑘  data words are multiplied by the 

Generator Matrix [9] to form a codeword. When a node fails, 
the decoding process is done first by deleting rows of 
Generator Matrix, 𝐺 𝑘 , and then performing matrix inversion, 

𝐺 𝑘
−1  and multiplying it to the existing words: where 

 𝑥 0, 𝑥 1 …   𝑥 𝑘 −1  are the original words and  𝑐 ′0, 𝑐 ′1 …   𝑐 ′𝑘 −1  
are the existing words after a node failure. 
 

 

𝑥 0

𝑥 1

⋮
𝑥 𝑘 −1

 = 𝐺 𝑘
−1  

𝑐 ′0
𝑐 ′1
⋮

𝑐 ′𝑘 −1

  

 
We used Vandermonde-based RS codes [9] because of its 
powerfulness and flexibility. It has the ability to ensure data 
reliability for any value of 𝑛  and 𝑚 compared to other simple 

erasure code functions like XOR. For example, a (5, 2) Reed 
Solomon code is capable of tolerating all 3 node failures 
compared to (5, 2) XOR-based code which may only be able 
to allow at most 3 node failures. 
 

4 PROPOSED SCHEME (HDFS+)  
Our scheme disables the HDFS replication and adds the 
encoding and decoding functions executed by the DataNode. 
Additional fragments are written as soon as they are 
generated and they are saved in distinct DataNodes. 
DataTransferProtocol is used to send and receive data 
between the DataNodes. An example of HDFS+ deployment is 
shown in figure 5. 
 

 

 

 

 

 

 

 

 

 



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 9, SEPTEMBER 2013      ISSN 2277-8616 

192 
IJSTR©2013 
www.ijstr.org 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 HDFS Architecture 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 HDFS+ Architecture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Example of HDFS+deployment with 4 DataNodes 
 

4.1 Write Operation  
The write operation in HDFS+ is shown in figure 6 and it 
follows the following procedure: First, when the Client wants to 
write a file, it sends write request to the NameNode. Second, 
the NameNode provides to the Client the list of available 
DataNodes to save the data. Third, the Client chooses the 
nearest DataNode, and writes the blocks into it. This 

DataNode becomes the primary DataNode. Fourth, the 
primary DataNode performs erasure-encoding using 
configured (n, k) values that divide the block into m fragments 
and encode them into n fragments as shown in figure 6. The 
fragments created are saved on different DataNodes in the 
Hadoop cluster. Fifth, the acknowledgement of successful 
write is sent to the NameNode. 
 
HDFS+ Write Algorithm: 

Input: Data block db to be written 
Output: Writing data block db to HDFS+ 
1: //C: Client 
2: //DN: DataNode 
3://LDN: List of DataNodes {DN1, DN2, …,DNN} 
4://PDN: Primary DataNode 
5://NN: NameNode 
6: C sends write request to NN 

7: NN provides LDN to C for saving db 

8: Cchooses one DN from LDN and makes it PDN 

9: C writes db to PDN 

10: PDN asks NN for LDN for saving fragments 
11:NN provides LDN to PDN 
12: PDN erasure encode db 
13: PDN save fragments to distinct LDN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 HDFS+ Write Operation 
 
By comparing figure 1 and figure 6, we could see that the 
proposed scheme is better than the original one in terms of 
space and I/O performance. 
 

4.2 Read Operation  
The Read operation of HDFS+ is shown in figure 7 and it 
follows the following procedure. First, when the Client wants to 
read a file, it sends a read request to the NameNode. Second, 
the NameNode provides to the Client the list of DataNodes 
that it can retrieve data from. Third, the Client chooses the 
best possible DataNode to read from, and check if it is a 
primary DataNode or not. Fourth, if the node selected is the 
primary DataNode, then the Client retrieve data. If the node 
selected is not the primary DataNode then it set that 
DataNode to be the primary DataNode. Fifth, the primary 
DataNode requests fragments from the other DataNodes with 
fragments for the requested data. When sufficient fragments 
have been obtained, the primary DataNode decodes the data 
and supply it to the read application request. 
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HDFS+ Read Algorithm: 
Input: Data block db to be read 
Output: Reading data block db to HDFS+ 
1: //C: Client 
2: //DN: DataNode 
3://LDN: List of DataNodes {DN1, DN2, …,DNN} 
4://BDN: Best possible node to read from  
5://PDN: Primary DataNode 
6://NN: NameNode 
7: C sends a request to read db to the NN 

8: NN provides LDN that has db or its fragments to C  
9: Cchooses the BDN from the given LDN 

10: if BDN is PDN 

11:  C retrieve db 
12: else  
13: set BDN to be PDN  
14:  PDN request fragments from other nodes in LDN 

15: PDN decodes the db 

16: PDN supply the db to C 
17: end if 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 HDFS+ Read Operation 
 
By comparing figure 2 and figure 7, we could see that the 
proposed scheme is better than the original one in terms of 
space and I/O performance. 
 

5 IMPLEMENTATION  
Experiment setup: Our Hadoop cluster consists of 4 nodes (1 
master, 4 slaves). The master node acted as a slave node in the 
cluster. Machines were running Linux CentOS 5.6, Hadoop stable 
version 0.20.203 and Java Sun’s JDK 1.6.0_26. Table 1 shows 
the DataNodes in our Hadoop cluster with their hardware 
specifications.  

 

TABLE 1 
HARDWARE ENVIRONMENT FOR THE EXPERIMENT 

 

DataNode 
RAM 
(GB) 

CPU 
Hard Disk 
(GB) 

1 15 
Intel core i7-
2600 3.4HGz 

4000 

2 1.7 
Intel Core 2 
Quad 240GHz  

250 

3 3.5 
Intel Core 2 
213GHz 

410 

4 3.9 
Intel Core 2 
213GHz 

240 

 
We used TestDFSIO, Hadoop I/O benchmark that is included in 
the source distribution for performance test. TestDFSIO takes a 

configured file size and the number of files, push them into HDFS 
where a map job is run for each file and writes the file into HDFS. 
We used Java Native Interface (JNI) to enable the interaction 
between jerasure library, which is written in C, and HDFS that is 
java-based. Encoding and decoding native methods are loaded 
and executed by the DataNode. Since HDFS recognizes the 
stored data in form of blocks, HDFS block was used as the 
unit of encoding where m data fragments are encoded to 
produce (n-m) additional fragments. We used Vandermonde-
based RS erasure code of the jerasure library [9]. A one-to-
one mapping of data and additional fragments is maintained. 
Additional queue to handle the additional fragments from 
erasure coding is added alongside with the HDFS data Queue. 

 

6 PERFORMANCE EVALUATION  
We tested performance of writing and reading 10 files of 
different file sizes on our scheme (HDFS+) and HDFS in its 
default settings with varying cases of zero-node failure, single-
node failure and double- node failures. The Hadoop I/O 
benchmark tool TestDFSIO was run under loading of one map 
task and three reduce tasks per each node and a network 
performance of approximately 1 Gb/sec. HDFS was in its 
default configuration and HDFS+ was configured with (n, 
k)=(3,1) erasure code, which gives the maximum tolerance of 
two failures resembling HDFS reliability level in its default 
settings.  

 

6.1 Space Efficiency 
In figure 8 we compared the space efficiency between the original 
scheme (HDFS) and the proposed scheme (HDFS+).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Comparison between the original HDFS scheme and 
the proposed HDFS+ scheme on the space efficiency given 

the same reliability 
 
We first observed the used and available free storage size in 
HDFS and HDFS+ before writing data. We then write files of 
different sizes using shell command ―put‖ and observed the 
storage size acquired by that writing in both schemes. Storage 
size defines the total size of the saved file replicates for HDFS 
and the total size of the saved file fragments for the HDFS+. We 
could see that the proposed scheme (HDFS+) is better than the 
original scheme (HDFS) in terms of space efficiency. Our 
scheme increases the space efficiency by 16.67% when using 
1-out-of-3 erasure coding. HDFS triplicates data, hence 
creating a storage overhead of 3x, x being the size of the data 

file. Meanwhile, HDFS+ has storage overhead of(𝑥 + 𝑥  
1

𝑟
 ), 

 

 



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 9, SEPTEMBER 2013      ISSN 2277-8616 

194 
IJSTR©2013 
www.ijstr.org 

where 𝑟 =
𝑚

𝑛
and 𝑛 > 𝑚.Where x is the size of data file, r is the 

encoding rate, m is the number of fragments data is divided 

into; nis the number of fragments data recoded into and 
1

𝑟
 is 

the erasure coding storage overhead. Theoretically, our 

 𝑛,𝑘 = (3,1)  erasure code has a rate of encoding, 𝑟 =
𝑚

𝑛
=

2

3
= 0.66 which gives the storage overhead of 

1

𝑟
 = 1.5 . 

Example, for a 256 MB file size, HDF triplicates it creating a 
total storage size of 768 MB. HDFS+ using  𝑛,𝑘 = (3,1) 

erasure coding makes a total storage of 640 MB From the 

HDFS+ storage overhead equation, (𝑥 + 𝑥  
1

𝑟
 ), we can see 

that the space efficiency increases as the rate of encoding 
approaches to 1. The maximum space efficiency that HDFS+ 
can provide is 33%. Figure 9 shows the relationship between 
the rate of encoding and the space efficiency in HDF+. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 HDFS and HDFS+ reading performance of 128MB file 
from 4 DataNodes during zero-node failure, single-node failure 

and double-node failures 
 

6.2 I/O Performance 
We then examined the write and read performances between 
the original scheme (HDFS) and the proposed scheme 
(HDFS+) using 10 files of 256 MB. We compared the write 
performances on HDFS and HDFS+ schemes with the 
following cases: HDFS with single replication, HDFS with 
double replication, HDFS with triple replication (the default 
HDFS setting) and HDFS+ with configured 1-out-of-3 erasure 
coding. In Figure 10 (a) we could see HDFS+ write 
performance outperformed the HDFS scheme by 1.4. The 
HDFS scheme pipeline DataNodes during writing, that is data 
is considered written after all the data blocks are replicated 
three times and saved to the DataNodes. HDFS+ needs to 
send one full block and n/m chunks to other DataNodes, 
compared to original scheme that sends three full blocks to the 
DataNodes.   
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 (a) Comparison between the original scheme (HDFS) 
and the proposed scheme (HDFS+) using different replication 

and encoding schemes based on write performance. 
 
In Figure 10 (a) we could see HDFS+ write performance 
outperformed the HDFS scheme by 1.4. The HDFS scheme 
pipeline DataNodes during writing, that is data is considered 
written after all the data blocks are replicated three times and 
saved to the DataNodes. HDFS+ needs to send one full block 
and n/m chunks to other DataNodes, compared to original 
scheme that sends three full blocks to the DataNodes.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 (b) Comparison between original HDFS scheme and 
the proposed HDFS+ scheme based on the read performance 
under zero-node failure, single-node failure and double-node 

failures. 
 
HDFS+ offer smaller sizes of encoded files, chunks that save 
enough network transmission time of offset the extra encoding 
time. We can see that there is an incremental rise in time used 
to write x1 to x2 and x3 in HDFS. Write throughputs are 
observed to be 16.44, 12.65 and 8.72 MB/s respectively for 
HDFS x1, x2 and x3 and 12.28 MB/s for HDFS+ with 1-out-of-
3 erasure coding. HDFS+ increase write throughput since it 
writes less data to the network compared to the HDFS. Figure 
10 (b) presents the read performance of HDFS+ compared to 
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the HDFS in zero-node failure, single-node failure and double-
node failure. The HDFS+ read performance is observed to be 
approximately the same with HDFS in zero-node failure, 
single-node failure and double-node failure when data is read 
from Primary DataNode. This is because; in such scenario the 
read operation retrieve the block directly from the DataNode 
without performing the decoding process. HDFS+ decreases 
read performance in a single-node failure of master/primary 
DataNode by 22.5 %. This is due to decoding process 
(reconstructing data from the fragments) during read. In a 
double-node failure of a master node and a non-master node, 
HDFS+ decreases read performance by 34.2%. Otherwise, 
HDFS read throughput are observed to be approximately the 
same for zero-node failure, single-node failure and double-
node failure. This is because HDFS retrieve blocks directly 
from the DataNode. We then computed the probability of all 
failure cases, having 4 DataNodes in HDFS+ and summarizes 
in Table 2. The probability of a single-node failure (master 
node) is 0.25, while the probability that other nodes will not fail 
is 0.75. The probability of double-node failure that involve a 
master-node and a non-master node is 0.5 and the probability 
of a double-node failure that involves two non-master nodes is 
0.5. 

TABLE 2 
PROBABILITY OF NODE FAILURE IN HDFS+ WITH 4 

DATANODES 

 

Failure 
Type 

Node(s) Failure 
Case 

Probability 

Single 
Node 

Master Node 0.25 

Single 
Node 

Non-Master Node 0.75 

Double 
Node 

Master-Node & Non-
Master Node 

0.5 

Double 
Node 

Non-Master Node & 
Non-Master Node 

0.5 

 
We used the cases and their probabilities in Table 2 to 
compute the expected read performance in the proposed 
HDFS+ scheme with 4 DataNodes. Figure 11 shows the 
performance of expected read throughput with the number of 
failure. The expected read performance for HDFS remain the 
same while in HDFS+ the performance decreases slightly with 
the number of node failure. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11Comparison between the original scheme (HDFS) and 
the proposed scheme (HDFS+) based on the expected read 

performance and number of node failures. 
 
We then present the general case when n DataNodes are 
used. Table 3 shows the general case for each failure with n 
DataNodes. The cases cover the single-node failure of a 
master node, single-node failure of a non-master node, 
double-node failure of a master and a non-master nodes and 
double-node failure of two non-master nodes. 
 

TABLE 3 
GENERAL CASES FOR PROBABILITY OF NODE FAILURE 

IN HDFS+ WITH 𝑛 DATANONES. 

 

Event Probability 

Single node failure (Master Node) 
1

𝑛
 

Single node failure (Non-Master Node) 1- 
1

𝑛
 

Double node failure (Master-Node & 
Non-Master Node) 

 𝐶1
𝑛−1  

 𝐶2
𝑛  

 

Double node failure (Non-Master Node 
& Non-Master Node) 

 𝐶2
𝑛−1  

 𝐶2
𝑛  

 

 
Based of Table 3 above, we plot the relationship that exists 
between the expected read throughput and the number of 
DataNodes in a single-node and double-node failures. The 
expected read throughput in a single-node failure for n 
DataNodes is given by the product of the average read 
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throughput and its probability based on the number of 
DataNodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12Relationship between single-node failure and number 

of nodes in HDFS+. 
 
Figure 13 plots the expected read throughput of a double-node 
failure in n DataNodes. We could see that the expected read 
throughput increases as the number of DataNodes increases 
for single-node and double-node failures. That means, as the 
number of DataNodes increases, the chances of primary 
DataNode to fail decreases. Also, there is a more chance to 
read from the primary DataNode or the best possible 
DataNode with high performance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13Relationship between double-node failure and number 

of nodes in HDFS+. 

 

7 CONCLUSION AND FUTURE WORK 
In this paper, we designed and implemented HDFS+, an 
erasure coding based Hadoop Distributed File System. We 
compared the performance of the proposed scheme with the 
HDFS. The experimental results show that the proposed 
scheme (HDFS+) can save up to 33 % of space while 
outperforming the original scheme in write throughput by 1.4 
times. It maintains the read performance under zero-node 
failure, single-node failure and double-node failure provided 
that the data is read from the primary DataNode. The read 

performance of the proposed scheme (HDFS+) is decreased 
by 22.54 % in the presence of single node failure and 34.23% 
for double node failure that includes a primary DataNode. Our 
future work will focus on enhancing the read performance of 
the HDFS+ when data has to be reconstructed. 
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