
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 9, SEPTEMBER 2013 ISSN 2277-8616

190
IJSTR©2013
www.ijstr.org

HDFS+: Erasure Coding Based Hadoop
Distributed File System

Fredrick RomanusIshengoma

Abstract: A simple replication-based mechanism has been used to achieve high data reliability of Hadoop Distributed File System (HDFS). However,
replication based mechanisms have high degree of disk storage requirement since it makes copies of full block without consideration of storage size.
Studies have shown that erasure-coding mechanism can provide more storage space when used as an alternative to replication. Also, it can increase
write throughput compared to replication mechanism. To improve both space efficiency and I/O performance of the HDFS while preserving the same
data reliability level, we propose HDFS+, an erasure coding based Hadoop Distributed File System. The proposed scheme writes a full block on the
primary DataNode and then performs erasure coding with Vandermonde-based Reed-Solomon algorithm that divides data into m data fragments and
encode them into ndata fragments (n>m), which are saved in N distinct DataNodes such that the original object can be reconstructed from any m
fragments. The experimental results show that our scheme can save up to 33% of storage space while outperforming the original scheme in write
performance by 1.4 times. Our scheme provides the same read performance as the original scheme as long as data can be read from the primary
DataNode even under single-node or double-node failure. Otherwise, the read performance of the HDFS+ decreases to some extent. However, as the
number of fragments increases, we show that the performance degradation becomes negligible.

Index Terms: Erasure coding, Hadoop, HDFS, I/O performance, node failure, replication, space efficiency.

————————————————————

1 INTRODUCTION
The tremendous advances in networking, storage capacity
and processing speed of computing devices in the last decade
have given rise to new applications which involves accessing
and storing thousands of gigabytes of data [1, 2]. Hadoop [3,
4] is a popular open-source implementation of MapReduce [5]
framework designed to analyze large data sets. It has two
parts; Hadoop Distributed File System (HDFS) [6, 7] and
MapReduce. HDFS is the file system used by Hadoop to store
its data. It has become popular due to its reliability, scalability,
and low-cost storage capability. HDFS is designed to operate
on commodity hardware components, which are prone to
failure. Files are triplicated (triple replication) to guarantee high
data reliability. The higher value of replication factor helps
HDFS to be highly fault tolerance and to increase read
bandwidth. HDFS’s triplication policy enables the tolerance of
two node failures at maximum on its default configuration.
However, it increases the storage overhead three times. An
alternative efficient way to provide the same data reliability
while reducing the storage overhead is to use erasure codes
[9, 11, 12, 13, 14, 15]. Erasure codes store data objects as
equations thus reducing much of the storage cost. Moreover,
with erasure codes, I/O performance can be improved as it
reduces bandwidth overhead of redundancy. In this paper, we
design and implement HDFS+ by replacing triple replication of
HDFS with erasure codes, and evaluate its performance in
terms of space efficiency and I/O compared to the HDFS’s
scheme. The rest of the paper is organized as follows: We
start by providing some related work in section II. Section III is
dedicated to the background of the study. The proposed
scheme is presented in section IV. In section V, we provide the
implementation and performance evaluation is presented in
section VI. We finalize with conclusion and future work in
section VII.

2 RELATED WORK
DiskReduce [8] framework proposed by Fan et al, integrates
HDFS with RAID for reducing storage overhead. In
DiskReduce, the write operation follows the HDFS’s scheme of
triple data replication and later RAID encoding process is
performed in the background. The system collects k different
blocks into a RAID set and m encoding blocks are calculated,

and all (k+m) blocks are saved in different DataNodes. After
encoding, the number of data copies is reduced from three
copies to one copy. Microsoft [10] integrated HDFS with
erasure codes and introduced new power proportionality and
complexity tradeoffs. The system waits to receive m blocks,
before calculating and writing (n-m) parity blocks. The scheme
is designed to perform erasure coding online in the data center
environment. Hendricks et al. [17] introduced a Byzantine
fault-tolerant protocol and shows that erasure coding based
mechanism can achieve higher write throughput compared to
replication-based mechanisms for a distributed storage
system. Maheswaran et al [18] proposed and implemented a
new set of erasure codes on Hadoop HDFS with the aim of
overcoming the limitation of high repair cost of Reed-Solomon
codes. The study shows a reduction of approximately 2x on
the repair disk I/O and repair network traffic. However, this
coding requires 14% more storage compared to Reed-
Solomon codes.

3 BACKGROUND
In this section, we shall present basic concepts that are
essential to our work.

3.1 Hadoop Distributed File System
The HDFS architecture consists of the following components:
NameNode, DataNode and Client as shown in figure 3.
NameNode is a central server that controls the Hadoop
cluster. It keeps data structures that map a block to a filename
(Namespace) and a block to a DataNode (Inode). It also
executes namespace operations of the file system like
opening, closing and renaming files and directories. DataNode
is a node that stores HDFS blocks and acts as a slave to the
NameNode. In HDFS, a file is broken down into one or more
blocks and these blocks are stored in the collection of
DataNodes. DataNode acts according to commands received
from the NameNode such as replicating a block or deleting
over replicated block also read and write request from the
Client. DataNode is required to send heartbeat and block
report to the NameNode in a regular interval. NameNode uses
the received report to verify the file system metadata and
block map. The Client is responsible for sending write and
read request to the NameNode using the Client Protocol.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 9, SEPTEMBER 2013 ISSN 2277-8616

191
IJSTR©2013
www.ijstr.org

When a red or write request is sent to the NameNode,
NameNode returns DataNode address information to the
Client. For the write request, Client writes the blocks orderly to
the DataNodes and for the read request, the Client retrieve the
data from the list of DataNodes given by the NameNode. Data
transfer between the Client and the DataNode is done using
Data Transfer Protocol as shown in figure 3.

3.1.1 Write Operation
The write operation for the HDFS is shown in figure 1 for the
Hadoop cluster having three DataNodes with default settings.
The steps are as follows: (1) A block to be written into HDSF is
initially cached in a temporary local file until at least one HDFS
block size is reached, and then a write request is sent to the
NameNode. (2) NameNode generates blockid, find and
returns a list of DataNodes for saving the data to the Client.

Fig. 1 HDFS write with default 3-way replication

(3) The Client writes the block to the first DataNode as shown
in figure 1. (4) The first DataNode sends the block to the
second DataNode in the pipeline, and the second DataNode
passes it to the third DataNode. (5) In a regular time interval
NameNode keep receiving a Blockreport and a Heartbeat from
each of the DataNodes in the cluster.

3.1.2 Read Operation
The read operation for the HDFS is shown in figure 2 for the
Hadoop cluster having three DataNodes with default settings.
It has the following steps: (1) When the Client wants to read a
file; it sends a read request to the NameNode. (2) NameNode
locates the file, find all its blocks (using file to block mapping),
find the DataNodes having these blocks, order the DataNodes
according to the distance from the Client and provide a list of
DataNodes to the Client as shown in figure 2. (3) The Client
communicates with the nearest DataNodes to retrieve data.
(4) If it cannot retrieve the data from the first DataNode then it
will try from the next DataNode in the list as shown in figure 2.

Fig. 2 HDFS read with default 3-way replication

3.2 Erasure Coding
A Maximum Distance Separable (MDS) erasure code 𝑛 , 𝑘
[11] or simply k-of-n code, takes 𝑛 storage nodes, 𝑘 of these

holds data and 𝑚 coding information, such that 𝑛 can be

reconstructed up to when 𝑛 − 𝑘 nodes fails without data

loss. The node failures are named as erasures. Reed-
Solomon (RS) codes [16] are standard MDS codes that are
obtained by evaluating polynomials over a finite field.
Vandermonde-based RS code uses linear algebra in its
encoding process where 𝑘 data words are multiplied by the

Generator Matrix [9] to form a codeword. When a node fails,
the decoding process is done first by deleting rows of
Generator Matrix, 𝐺 𝑘 , and then performing matrix inversion,

𝐺 𝑘
−1 and multiplying it to the existing words: where

 𝑥 0, 𝑥 1 … 𝑥 𝑘 −1 are the original words and 𝑐 ′0, 𝑐 ′1 … 𝑐 ′𝑘 −1
are the existing words after a node failure.

𝑥 0

𝑥 1

⋮
𝑥 𝑘 −1

 = 𝐺 𝑘
−1

𝑐 ′0
𝑐 ′1
⋮

𝑐 ′𝑘 −1

We used Vandermonde-based RS codes [9] because of its
powerfulness and flexibility. It has the ability to ensure data
reliability for any value of 𝑛 and 𝑚 compared to other simple

erasure code functions like XOR. For example, a (5, 2) Reed
Solomon code is capable of tolerating all 3 node failures
compared to (5, 2) XOR-based code which may only be able
to allow at most 3 node failures.

4 PROPOSED SCHEME (HDFS+)
Our scheme disables the HDFS replication and adds the
encoding and decoding functions executed by the DataNode.
Additional fragments are written as soon as they are
generated and they are saved in distinct DataNodes.
DataTransferProtocol is used to send and receive data
between the DataNodes. An example of HDFS+ deployment is
shown in figure 5.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 9, SEPTEMBER 2013 ISSN 2277-8616

192
IJSTR©2013
www.ijstr.org

Fig. 3 HDFS Architecture

Fig. 4 HDFS+ Architecture

Fig. 5 Example of HDFS+deployment with 4 DataNodes

4.1 Write Operation
The write operation in HDFS+ is shown in figure 6 and it
follows the following procedure: First, when the Client wants to
write a file, it sends write request to the NameNode. Second,
the NameNode provides to the Client the list of available
DataNodes to save the data. Third, the Client chooses the
nearest DataNode, and writes the blocks into it. This

DataNode becomes the primary DataNode. Fourth, the
primary DataNode performs erasure-encoding using
configured (n, k) values that divide the block into m fragments
and encode them into n fragments as shown in figure 6. The
fragments created are saved on different DataNodes in the
Hadoop cluster. Fifth, the acknowledgement of successful
write is sent to the NameNode.

HDFS+ Write Algorithm:

Input: Data block db to be written
Output: Writing data block db to HDFS+
1: //C: Client
2: //DN: DataNode
3://LDN: List of DataNodes {DN1, DN2, …,DNN}
4://PDN: Primary DataNode
5://NN: NameNode
6: C sends write request to NN

7: NN provides LDN to C for saving db

8: Cchooses one DN from LDN and makes it PDN

9: C writes db to PDN

10: PDN asks NN for LDN for saving fragments
11:NN provides LDN to PDN
12: PDN erasure encode db
13: PDN save fragments to distinct LDN

Fig. 6 HDFS+ Write Operation

By comparing figure 1 and figure 6, we could see that the
proposed scheme is better than the original one in terms of
space and I/O performance.

4.2 Read Operation
The Read operation of HDFS+ is shown in figure 7 and it
follows the following procedure. First, when the Client wants to
read a file, it sends a read request to the NameNode. Second,
the NameNode provides to the Client the list of DataNodes
that it can retrieve data from. Third, the Client chooses the
best possible DataNode to read from, and check if it is a
primary DataNode or not. Fourth, if the node selected is the
primary DataNode, then the Client retrieve data. If the node
selected is not the primary DataNode then it set that
DataNode to be the primary DataNode. Fifth, the primary
DataNode requests fragments from the other DataNodes with
fragments for the requested data. When sufficient fragments
have been obtained, the primary DataNode decodes the data
and supply it to the read application request.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 9, SEPTEMBER 2013 ISSN 2277-8616

193
IJSTR©2013
www.ijstr.org

HDFS+ Read Algorithm:
Input: Data block db to be read
Output: Reading data block db to HDFS+
1: //C: Client
2: //DN: DataNode
3://LDN: List of DataNodes {DN1, DN2, …,DNN}
4://BDN: Best possible node to read from
5://PDN: Primary DataNode
6://NN: NameNode
7: C sends a request to read db to the NN

8: NN provides LDN that has db or its fragments to C
9: Cchooses the BDN from the given LDN

10: if BDN is PDN

11: C retrieve db
12: else
13: set BDN to be PDN
14: PDN request fragments from other nodes in LDN

15: PDN decodes the db

16: PDN supply the db to C
17: end if

Fig. 7 HDFS+ Read Operation

By comparing figure 2 and figure 7, we could see that the
proposed scheme is better than the original one in terms of
space and I/O performance.

5 IMPLEMENTATION
Experiment setup: Our Hadoop cluster consists of 4 nodes (1
master, 4 slaves). The master node acted as a slave node in the
cluster. Machines were running Linux CentOS 5.6, Hadoop stable
version 0.20.203 and Java Sun’s JDK 1.6.0_26. Table 1 shows
the DataNodes in our Hadoop cluster with their hardware
specifications.

TABLE 1
HARDWARE ENVIRONMENT FOR THE EXPERIMENT

DataNode
RAM
(GB)

CPU
Hard Disk
(GB)

1 15
Intel core i7-
2600 3.4HGz

4000

2 1.7
Intel Core 2
Quad 240GHz

250

3 3.5
Intel Core 2
213GHz

410

4 3.9
Intel Core 2
213GHz

240

We used TestDFSIO, Hadoop I/O benchmark that is included in
the source distribution for performance test. TestDFSIO takes a

configured file size and the number of files, push them into HDFS
where a map job is run for each file and writes the file into HDFS.
We used Java Native Interface (JNI) to enable the interaction
between jerasure library, which is written in C, and HDFS that is
java-based. Encoding and decoding native methods are loaded
and executed by the DataNode. Since HDFS recognizes the
stored data in form of blocks, HDFS block was used as the
unit of encoding where m data fragments are encoded to
produce (n-m) additional fragments. We used Vandermonde-
based RS erasure code of the jerasure library [9]. A one-to-
one mapping of data and additional fragments is maintained.
Additional queue to handle the additional fragments from
erasure coding is added alongside with the HDFS data Queue.

6 PERFORMANCE EVALUATION
We tested performance of writing and reading 10 files of
different file sizes on our scheme (HDFS+) and HDFS in its
default settings with varying cases of zero-node failure, single-
node failure and double- node failures. The Hadoop I/O
benchmark tool TestDFSIO was run under loading of one map
task and three reduce tasks per each node and a network
performance of approximately 1 Gb/sec. HDFS was in its
default configuration and HDFS+ was configured with (n,
k)=(3,1) erasure code, which gives the maximum tolerance of
two failures resembling HDFS reliability level in its default
settings.

6.1 Space Efficiency
In figure 8 we compared the space efficiency between the original
scheme (HDFS) and the proposed scheme (HDFS+).

Fig. 8 Comparison between the original HDFS scheme and
the proposed HDFS+ scheme on the space efficiency given

the same reliability

We first observed the used and available free storage size in
HDFS and HDFS+ before writing data. We then write files of
different sizes using shell command ―put‖ and observed the
storage size acquired by that writing in both schemes. Storage
size defines the total size of the saved file replicates for HDFS
and the total size of the saved file fragments for the HDFS+. We
could see that the proposed scheme (HDFS+) is better than the
original scheme (HDFS) in terms of space efficiency. Our
scheme increases the space efficiency by 16.67% when using
1-out-of-3 erasure coding. HDFS triplicates data, hence
creating a storage overhead of 3x, x being the size of the data

file. Meanwhile, HDFS+ has storage overhead of(𝑥 + 𝑥
1

𝑟
),

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 9, SEPTEMBER 2013 ISSN 2277-8616

194
IJSTR©2013
www.ijstr.org

where 𝑟 =
𝑚

𝑛
and 𝑛 > 𝑚.Where x is the size of data file, r is the

encoding rate, m is the number of fragments data is divided

into; nis the number of fragments data recoded into and
1

𝑟
 is

the erasure coding storage overhead. Theoretically, our

 𝑛,𝑘 = (3,1) erasure code has a rate of encoding, 𝑟 =
𝑚

𝑛
=

2

3
= 0.66 which gives the storage overhead of

1

𝑟
 = 1.5 .

Example, for a 256 MB file size, HDF triplicates it creating a
total storage size of 768 MB. HDFS+ using 𝑛,𝑘 = (3,1)

erasure coding makes a total storage of 640 MB From the

HDFS+ storage overhead equation, (𝑥 + 𝑥
1

𝑟
), we can see

that the space efficiency increases as the rate of encoding
approaches to 1. The maximum space efficiency that HDFS+
can provide is 33%. Figure 9 shows the relationship between
the rate of encoding and the space efficiency in HDF+.

Fig. 9 HDFS and HDFS+ reading performance of 128MB file
from 4 DataNodes during zero-node failure, single-node failure

and double-node failures

6.2 I/O Performance
We then examined the write and read performances between
the original scheme (HDFS) and the proposed scheme
(HDFS+) using 10 files of 256 MB. We compared the write
performances on HDFS and HDFS+ schemes with the
following cases: HDFS with single replication, HDFS with
double replication, HDFS with triple replication (the default
HDFS setting) and HDFS+ with configured 1-out-of-3 erasure
coding. In Figure 10 (a) we could see HDFS+ write
performance outperformed the HDFS scheme by 1.4. The
HDFS scheme pipeline DataNodes during writing, that is data
is considered written after all the data blocks are replicated
three times and saved to the DataNodes. HDFS+ needs to
send one full block and n/m chunks to other DataNodes,
compared to original scheme that sends three full blocks to the
DataNodes.

Fig. 10 (a) Comparison between the original scheme (HDFS)
and the proposed scheme (HDFS+) using different replication

and encoding schemes based on write performance.

In Figure 10 (a) we could see HDFS+ write performance
outperformed the HDFS scheme by 1.4. The HDFS scheme
pipeline DataNodes during writing, that is data is considered
written after all the data blocks are replicated three times and
saved to the DataNodes. HDFS+ needs to send one full block
and n/m chunks to other DataNodes, compared to original
scheme that sends three full blocks to the DataNodes.

Fig. 10 (b) Comparison between original HDFS scheme and
the proposed HDFS+ scheme based on the read performance
under zero-node failure, single-node failure and double-node

failures.

HDFS+ offer smaller sizes of encoded files, chunks that save
enough network transmission time of offset the extra encoding
time. We can see that there is an incremental rise in time used
to write x1 to x2 and x3 in HDFS. Write throughputs are
observed to be 16.44, 12.65 and 8.72 MB/s respectively for
HDFS x1, x2 and x3 and 12.28 MB/s for HDFS+ with 1-out-of-
3 erasure coding. HDFS+ increase write throughput since it
writes less data to the network compared to the HDFS. Figure
10 (b) presents the read performance of HDFS+ compared to

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 9, SEPTEMBER 2013 ISSN 2277-8616

195
IJSTR©2013
www.ijstr.org

the HDFS in zero-node failure, single-node failure and double-
node failure. The HDFS+ read performance is observed to be
approximately the same with HDFS in zero-node failure,
single-node failure and double-node failure when data is read
from Primary DataNode. This is because; in such scenario the
read operation retrieve the block directly from the DataNode
without performing the decoding process. HDFS+ decreases
read performance in a single-node failure of master/primary
DataNode by 22.5 %. This is due to decoding process
(reconstructing data from the fragments) during read. In a
double-node failure of a master node and a non-master node,
HDFS+ decreases read performance by 34.2%. Otherwise,
HDFS read throughput are observed to be approximately the
same for zero-node failure, single-node failure and double-
node failure. This is because HDFS retrieve blocks directly
from the DataNode. We then computed the probability of all
failure cases, having 4 DataNodes in HDFS+ and summarizes
in Table 2. The probability of a single-node failure (master
node) is 0.25, while the probability that other nodes will not fail
is 0.75. The probability of double-node failure that involve a
master-node and a non-master node is 0.5 and the probability
of a double-node failure that involves two non-master nodes is
0.5.

TABLE 2
PROBABILITY OF NODE FAILURE IN HDFS+ WITH 4

DATANODES

Failure
Type

Node(s) Failure
Case

Probability

Single
Node

Master Node 0.25

Single
Node

Non-Master Node 0.75

Double
Node

Master-Node & Non-
Master Node

0.5

Double
Node

Non-Master Node &
Non-Master Node

0.5

We used the cases and their probabilities in Table 2 to
compute the expected read performance in the proposed
HDFS+ scheme with 4 DataNodes. Figure 11 shows the
performance of expected read throughput with the number of
failure. The expected read performance for HDFS remain the
same while in HDFS+ the performance decreases slightly with
the number of node failure.

Fig. 11Comparison between the original scheme (HDFS) and
the proposed scheme (HDFS+) based on the expected read

performance and number of node failures.

We then present the general case when n DataNodes are
used. Table 3 shows the general case for each failure with n
DataNodes. The cases cover the single-node failure of a
master node, single-node failure of a non-master node,
double-node failure of a master and a non-master nodes and
double-node failure of two non-master nodes.

TABLE 3
GENERAL CASES FOR PROBABILITY OF NODE FAILURE

IN HDFS+ WITH 𝑛 DATANONES.

Event Probability

Single node failure (Master Node)
1

𝑛

Single node failure (Non-Master Node) 1-
1

𝑛

Double node failure (Master-Node &
Non-Master Node)

 𝐶1
𝑛−1

 𝐶2
𝑛

Double node failure (Non-Master Node
& Non-Master Node)

 𝐶2
𝑛−1

 𝐶2
𝑛

Based of Table 3 above, we plot the relationship that exists
between the expected read throughput and the number of
DataNodes in a single-node and double-node failures. The
expected read throughput in a single-node failure for n
DataNodes is given by the product of the average read

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 9, SEPTEMBER 2013 ISSN 2277-8616

196
IJSTR©2013
www.ijstr.org

throughput and its probability based on the number of
DataNodes.

Fig. 12Relationship between single-node failure and number

of nodes in HDFS+.

Figure 13 plots the expected read throughput of a double-node
failure in n DataNodes. We could see that the expected read
throughput increases as the number of DataNodes increases
for single-node and double-node failures. That means, as the
number of DataNodes increases, the chances of primary
DataNode to fail decreases. Also, there is a more chance to
read from the primary DataNode or the best possible
DataNode with high performance.

Fig. 13Relationship between double-node failure and number

of nodes in HDFS+.

7 CONCLUSION AND FUTURE WORK
In this paper, we designed and implemented HDFS+, an
erasure coding based Hadoop Distributed File System. We
compared the performance of the proposed scheme with the
HDFS. The experimental results show that the proposed
scheme (HDFS+) can save up to 33 % of space while
outperforming the original scheme in write throughput by 1.4
times. It maintains the read performance under zero-node
failure, single-node failure and double-node failure provided
that the data is read from the primary DataNode. The read

performance of the proposed scheme (HDFS+) is decreased
by 22.54 % in the presence of single node failure and 34.23%
for double node failure that includes a primary DataNode. Our
future work will focus on enhancing the read performance of
the HDFS+ when data has to be reconstructed.

REFERENCES
[1] G. D.H.-C.Du, ―Recent Advancements and Future

Challenges of Storage Systems‖, Proceedings of the
IEEE, 96(11): 1875-186, 2008.

[2] J.GantzandD.Reinsel, ‖The Digital Universe Decade–

Are You Ready?‖ http://idcdocserv.com/925, 2010.

[3] The Apache Software Foundation,―Welcome to

Apache Hadoop,‖ http://hadoop.apache.org.

[4] T.White, ―Hadoop: The definitive guide (Third

Edition),‖ O’Reilly & Associates Incorporated, 2012.

[5] J. Dean and S. Ghemawat, ―MapReduce: Simplified

data processing on large clusters,‖ Communications
of the ACM 51(1), pp. 107–113, January 2008.

[6] The Apache Software Foundation, ―Welcome to

Hadoop Distributed File System,‖
http://hadoop.apache.org/hdfs.

[7] Konstantin Shvachko, HairongKuang, Sanjay Radia,

Robert Chansler, ―The Hadoop Distributed File
System‖, Proceedings of MSST2010, May 2010.

[8] Bin Fan. WittawatTantisiriroj, Lin Xiao, Garth Gibson,

―DiskReduce: Replication as a Prelude to Erasure
Coding in Data-Intensive Scalable Computing,‖ CMU
Parallel Data Laboratory Technical Report CMU-PDL-
11-112, October 2011.

[9] James S. Plank, JianqiangLuo, Catherine D.

Schuman, LihaoXu, Zooko Wilcox-O'Hearn, ―A
Performance Evaluation and Examination of Open
Source Erasure Coding Libraries for Storage,‖ FAST
2009.

[10] Zhe Zhang, AmeyDeshpande, Xiaosong Ma,

EnoThereska, and Dushyanth Narayanan, ―Does
Erasure Coding Have a Role to Play in My Data
Center?‖,Microsoft Research Technical Report MSR-
TR-2010-52. May 2010.

[11] A. G. Dimakis, K. Ramchandran, Y. Wu and C. Suh,

―A Survey on Network Codes for Distributed Storage‖,
Proceedings of the IEEE, vol. 99, no. 3, pp. 476--489,
March 2011.

[12] Yasushi Saito, SvendFrolund, Alistair Veitch, Arif

Merchant and Susan Spence. Fab: Building
Distributed Enterprise Disk Arrays from Commodity
Components‖, SIGOPS Oper. Syst. Rev,. 38(5):48-
58, 2004.

[13] Rodrigo Rodrigues, Barbara Liskov, ―High availability

in Dhts: Erasure coding vs. replication‖, In

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 9, SEPTEMBER 2013 ISSN 2277-8616

197
IJSTR©2013
www.ijstr.org

Proceedings of 4
th
 International Workshop on Peer-to-

Peer Systems, 2005.

[14] Andreas Haeberlen, Alan Mislove, Peter Druschel,

―Glacier: Highly Durable, Decentralized Storage
Despite Massive Correlated Failures‖, In NSDI’05:
Proceedings of the 2

nd
 conference on Synopsum on

Networked Systems Design & Implementation, pages
143-158, Berckley, CA, USA, 2005. USENIX
Association.

[15] John Wilkes, Rrichard Golding, Carl Staelin, Tim

Sulliva, ―The HpAutoraidHierarchial Storage System‖,
ACM Trans. Comput. Syst.14 (1): 108-136, 1996.

[16] Reed, I. S., and Solomon, G. ―Polynomial codes over

certain finite fields‖. Journal of the Society for
Industrial and Applied Mathematics 8 (1960), 300–
304.

[17] James Hendricks, Gregory R. Ganger,

Michael K. Reiter, ―Low-overhead Byzantine Fault-
tolerant Storage‖, In Proceedings of the Twenty-First
ACM Symposium on Operating Systems Principles,
Stevenson, WA, October 2007.

[18] Maheswaran Sathiamoorthy, MegasthenisAsteris,

DimitricPapailiopoulos, Alexandros G. Dimakis,
RamkumarVadali, Scott Chen, ―XORing Elephants:
Novel Erasure Codes for Big Data‖, Proceeding
PVLDB'13 Proceedings of the 39th international
conference on Very Large Data Bases Pages 325-
336, 2013.

