Evaluation Of Three Candidate DNA Barcoding Loci In Selected Ficus L. (Moraceae)

Jay Edneil C. Olivar, Rochelle Y. Brillantes, Rosario R. Rubite, Grecebio Jonathan D. Alejandro

Abstract: The genus Ficus L. (Moraceae) is known for its diverse morphology and habit as well as economical, ecological, and pharmaceutical importance. In this study, six Philippine Ficus species were utilized to determine the best barcoding loci among cpDNA (rbcL, trnH-psbA) and nrDNA (ITS) markers on the basis of universality, discriminatory power, and resolution of species. Both trnH-psbA and ITS showed 100% PCR success rate and 67% sequencing success, whereas rbcL exhibited 67% PCR success rate but 100% sequencing success. The trnH-psbA marker performed best in terms of discriminatory power, showing the highest variable informative site (71.37%) and the highest mean interspecific distance (48.32% ± 19.89%). ITS ranked next to trnH-psbA since it was able to generate 100% resolution of species and a comparable mean intraspecific distance score with trnH-psbA. Meanwhile, rbcL failed to resolve any species correctly; thus, it has a 0% resolution of species. We initially recommend trnH-psbA and ITS as potential DNA barcodes for molecular authentication of Ficus species.

Index Terms— DNA barcoding, ITS, Philippine Ficus, rbcL, trnH-psbA

1 Introduction

DNA barcoding is a technique that makes use of one or more short gene sequences from a standardized region of a genome to provide quick and reliable identification of species among all forms of life [1]. Aside from introducing a revolutionary advancement in taxonomic and phylogenetic studies, DNA barcoding has many useful applications that may spur the interest from the general public into studies on plant science among various disciplines including ecology, food and drugs safety, conservation biology and environmental protection [2]. Since a DNA barcode is made up of short gene sequence (600 to 800 bp), it has a special advantage of being retrieved and analyzed even from fragments of degraded samples. In this connection, DNA barcoding can ensure consumers whether the constituent plant material which an herbal supplement claims to contain is authentic and not a mere adulterant [3], [4]. In animals, DNA barcoding has been successfully carried out using a universal barcoding locus, the mitochondrial cytochrome oxidase I (MT–COI) gene [5]. In contrast, no single universal barcoding locus has been identified for plants and the MT–COI gene is not applicable due to its slow mutation rate [5]. The Consortium for the Barcoding of Life (CBOL) Plant Working Group proposed the combination of rbcL and matK as the core barcode. However, difficulties in assessing phylogenetic relationships of plants using the proposed barcode led taxonomists to appraise a particular barcoding locus that best applies to a plant taxon [6]. Hence, the public consortium on DNA barcoding suggests that whenever plants are subjected to DNA barcoding protocols, different DNA barcoding loci must first be assessed for its applicability to a specific taxon. The species-rich Ficus L. (Moraceae), comprising about 755 species, is among the largest genera of angiosperms [6]. In the Philippines alone, there are 108 indigenous Ficus species, 28 of which are endemic according to L. Co’s Nominal Checklist of Philippine seed plants. Ficus also exhibits vast diversity not only in terms of its morphological traits but also in the wide range of its phytochemical constituents [6]. Lansky et al. (2008) reported that Ficus extracts derived from bark, roots, leaves, fruits and latex exhibit cancer preventive, cancer therapeutic and anti-inflammatory activities [7]. Moreover, they found out that Ficus contains compounds like phenanthroindolizidine alkaloid, triterpenoid with C-18 carboxylic acid, flavonoids and lectin that are known to mediate anti-inflammatory, cytotoxic, and immune modulator activities [7]. With the rising information on the pharmaceutical importance of Ficus species, sooner or later, herbal supplements will be developed. Thus, to prevent fraud and to ensure consumer’s health, the application of DNA barcoding to Ficus species proves to be a useful endeavor. This starts with the assignment of a DNA barcoding locus appropriate for the identification of species within the taxon. In this study, the applicability of cpDNA (rbcL, trnH–psbA) and nrDNA (internal transcribed spacer ITS) markers was evaluated in selected Philippine Ficus species based on universality (PCR and sequencing success) and discriminatory power (mean inter- and intraspecific divergence and resolution of species).

2 METHODOLOGY

2.1 Collection and Preparation of Plant Material

Six leaf samples of Philippine Ficus species (Fig. 1), five of which are endemic (F. balete Merr., F. benjamina L., F. odorata (Blanco) Merr., F. pseudopilma Blanco, F. linearifolia Elmer, and F. ulmifolia Lam.), were collected in Mts. Palay-palay-Mataas na Gulod National Park (Ternate, Cavite), Quezon Province National Park (Atimonan, Quezon), and Mt. Makiling Forest Reserve (Los Banos, Laguna). Leaves of two individuals from different populations were collected for every species and were placed in Ziplock™ bags with silica-gel beads (Chase & Hill, 1991) for DNA sequence analyses.
2.2 DNA Extraction, Amplification, Purification, and Sequencing

Nuclear ITS and two chloroplast genome regions (rbcL and trnH-psbA) were evaluated. Genomic DNA was extracted from silica gel-dried leaves using the DNeasy Plant Mini Kit (Qiagen®, Germany) following the manufacturer’s protocol. PCR amplifications were performed on Biometra T-gradient. The primers and reaction procedures are listed in Table 1. The PCR products were inspected on 1% TAE agarose gels and subsequently purified using the QIAquick PCR Purification Kit (Qiagen®, Germany). The purified PCR products were sent to MACROGEN, South Korea for bidirectional sequencing.

2.3 Data Analysis

PCR success rate was evaluated by computing for the percentage of successfully amplified DNA. Sequences were assembled and edited with Codon Code Aligner v 4.2.5. Sequencing success was then evaluated by computing for the percentage of successfully assembled contigs. All sequences were aligned using ClustalW of MEGA 6.0 package and the alignment adjusted manually using MEGA 6.0 (Tamura et al., 2013). Inter- and intraspecific genetic divergences were calculated using p-distance with pairwise deletion options in MEGA 6.0. One-Way ANOVA was performed following Tukey’s Post Hoc test to prove statistical significance between the mean inter- and intraspecific genetic divergences of the three barcoding loci. To further evaluate the effectiveness of barcoding candidates for species discrimination, a Maximum Likelihood (ML) Tree was constructed using Kimura 2-parameter (K2P) distances using MEGA 6.0. Resolution of species was then calculated based on the constructed tree.

![Fig. 1. Photographs of sampled Ficus species: (a) F. ulmifolia Lam.; (b) F. balete Merr.; (c) F. benjamina L.; (d) F. linearifolia Elmer (e) F. pseudopalma Blanco; and, (f) F. odorata (Blanco) Merr.](image)
3 Results

3.1 PCR and Sequencing Success
The efficiency of PCR amplification and sequencing is an important index to evaluate the candidate barcoding locus. Both ITS and trnH-psbA exhibited 100% PCR success and 66.67% sequencing success while rbcL exhibited 66.67% PCR success and 100% sequencing success (Table 2). In terms of universality, no barcoding loci used in this study performed well.

3.2 Mean Inter- and Intraspecific Divergence
For individual regions, aligned sequence lengths range from 463 base pairs (bp) for trnH-psbA to 815 bp for rbcL (Table 2). The trnH-psbA locus contained the most variable sites (71.37%). Our results demonstrated that trnH-psbA exhibited the highest mean interspecific divergence (48.32% ± 19.89%). In terms of mean intraspecific divergence, both the ITS and the trnH-psbA loci can equally discriminate the same species as evidenced by the Tukey’s Post Hoc result (p-value of 0.855 greater than 0.05) which suggests inconclusive statistical difference between the means of ITS and trnH-psbA (Table 2 and Figure 2). The rbcL locus exhibited an unsatisfactory quality of a barcoding loci-low interspecific divergence and high intraspecific divergence (Table 2).

3.3 Resolution of Species
To evaluate whether species were recovered as monophyletic under each barcode, a ML tree was constructed using K2P distances. Both ITS and trnH-psbA were able to have a 100% species resolution (Table 2). The rbcL locus failed to resolve any of the samples correctly and therefore had a 0% resolution of species. Figure 3 presents the constructed trees and shows the resolution of species of the three barcoding loci.

TABLE 1

<table>
<thead>
<tr>
<th>DNA region</th>
<th>Primer Name</th>
<th>Sequence (5'→3')</th>
<th>Amplification Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITS</td>
<td>ITS 5</td>
<td>GGAAGTAAAAGTCGTACAAGG</td>
<td>94°C 5 min; 94°C 1 min, 50°C 45 s, 72°C 1 min, 30 cycles; 72°C 5 min</td>
</tr>
<tr>
<td></td>
<td>ITS 4</td>
<td>TCCTCCGCTTTATGGATTCG</td>
<td></td>
</tr>
<tr>
<td>trnH-psbA</td>
<td>trnH</td>
<td>CGCGCATGTTGGATTTCAATCC</td>
<td>95°C 4 min; 94°C 30 s, 55°C 1 min, 72°C 1 min, 35 cycles; 72°C 10 min</td>
</tr>
<tr>
<td></td>
<td>psbA</td>
<td>GTTATGCGATGAACGTATGCTC</td>
<td></td>
</tr>
<tr>
<td>rbcL</td>
<td>a_f</td>
<td>ATGTCAAGAACAGAGACTAAAGC</td>
<td>95°C 4 min; 94°C 30 s, 55°C 1 min, 72°C 1 min, 35 cycles; 72°C 10 min</td>
</tr>
<tr>
<td></td>
<td>a_r</td>
<td>CTTCCTGCTACAAATAAGATCGATCTC</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2

Properties of the three candidate DNA barcoding loci

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ITS</th>
<th>trnH-psbA</th>
<th>rbcL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR success (%)</td>
<td>100.00</td>
<td>100.00</td>
<td>66.67</td>
</tr>
<tr>
<td>Sequencing success (%)</td>
<td>66.67</td>
<td>66.67</td>
<td>100.00</td>
</tr>
<tr>
<td>Variable Informative Sites (%)</td>
<td>52.13</td>
<td>71.37</td>
<td>61.72</td>
</tr>
<tr>
<td>Aligned Length (bp)</td>
<td>681</td>
<td>463</td>
<td>815</td>
</tr>
<tr>
<td>Mean Interspecific distance (%)</td>
<td>30.05 ± 12.30</td>
<td>48.32 ± 19.89</td>
<td>33.50 ± 15.71</td>
</tr>
<tr>
<td>Mean Intraspecific distance (%)</td>
<td>1.02 ± 1.08</td>
<td>5.62 ± 4.49</td>
<td>40.08 ± 12.11</td>
</tr>
<tr>
<td>Resolution of Species (%)</td>
<td>100.00</td>
<td>100.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Fig. 2. Mean inter- and intraspecific genetic divergence with standard deviation error bars based on p-distance using MEGA6.0 with pairwise deletion options.

Fig. 3. Maximum likelihood trees constructed using K2P distances of: (A) ITS sequences showing 100% species resolution; (B) trnH-psbA sequences showing 100% species resolution; and, (C) rbcL sequences showing 0% resolution.

4 DISCUSSION

4.1 rbcL

A high PCR success score is rbcL’s major strength which paved the way for its selection by CBOL Plant Working Group as the core barcode together with matK [10]. Previous literature reported that rbcL performed best in terms of PCR success with an average score not lower than 90%. In fact, Li et al. (2012) derived 98.66% PCR success score using rbcL [6]. Several other studies (e.g., Hasebe, et al., (1995), Hollingsworth, et al., (2009), and Liu, et al., (2011)) proved that rbcL is easily sequenced and aligned in plant groups such as ferns, mosses and angiosperms [11], [12], [13]. In this study, findings on rbcL’s PCR success score (67%) proved contrary with Li et al. (2012). Findings might have changed if further PCR adjustments until results for unamplified samples become available. Since amplification of pure DNA was not successful for the three barcode markers (rbcL, trnH-psbA and ITS), dilution of DNA samples to 1:10 for second trial was carried out. ITS and trnH-psbA markers were able to yield 100% PCR success score using diluted DNA. To keep a standard level of comparison, the performance of three markers was based on second dilution amplification results. Perhaps rbcL could also have generated higher score if 1:100 dilution was tested. As a consequence of rbcL’s low discriminatory power, it was not able to resolve any species correctly in the ML tree generated. Based on our results, rbcL has low interspecific but exceedingly high intraspecific divergence. Hence, rbcL was not able to grouped similar species within a genus [10]. They posited that the low performance...
of *rbcl* in this parameter is attributed to the low mutation rate of bases in plastid DNA markers [10].

4.2 *trnH-psbA*

PCR success rate for *trnH-psbA* is highly satisfactory supporting previous literatures. In general, success rate for *trnH-psbA* does not exceed that of *rbcl*. It was reported by Shaw et al. (2005) that *trnH-psbA* has 75 -bp highly conserved sequences that are highly advantageous in developing universal primers [14]. However, sequencing problems encountered for *trnH-psbA* could be attributed to prevalence of indels, more variable lengths, and increased difficulty in alignment [11], [1], [10]. In addition, the presence of poly A/T sequences contributes to the low sequence quality [15]. Since *trnH-psbA* had a good discriminatory power based on mean inter- and intraspecific divergence score, it was able to generate a ML tree that correctly grouped similar species.

4.3 ITS

ITS exhibited moderate and in previous studies low PCR success rate. In some plant groups like gymnosperms, ferns and mosses, universal primers failed albeit. The use of primers ITS 3 and ITS 4 did not work for our samples, yet this primer set was recommended by Li H-Q et al [6]. Instead, ITS 4 and ITS 5 worked well and generated a perfect PCR success rate. The ITS marker also presented sequencing difficulties which could be attributed to prevalence of homopolymers and presence of multiple gene copies [15]. In addition, poly G and poly C sites in ITS sequences present themselves as sequencing difficulties [6]. The ITS marker has gained popularity as a barcoding locus in terms of its capacity to resolve species with the highest success rate. Even before DNA barcoding has gained popularity, botanists and taxonomists were already using ITS in phylogenetic studies since it can successfully discriminate different plant species [6]. In Li et al. (2012), ITS has the highest score at 72%. The high discriminatory power of ITS could be attributed to it possession of more variable sites than in plastid DNA [6].

5 CONCLUSION

Based on our results, *trnH-psbA* is the best performing locus in terms of discriminatory power considering its high variable informative sites and mean interspecific divergence score. Similar with *trnH-psbA* ITS can equally discriminate species. Hence, these two markers are initially recommended as potential DNA barcodes for molecular authentication of *Ficus* species. A need to increase sample size will develop more conclusive findings.

ACKNOWLEDGMENT

We thank the Thomasian Angiosperm Phylogeny and Barcoding Group (TAPBG) staff for assisting us in laboratory work; Research Center for the Natural & Applied Sciences, University of Santo Tomas for the facilities; Mr. Danny Tandang of the National Museum for plant identification. Mr. Li H-Q for generously sharing literature. GJDA thanks the DOST Philippine Council for Health, Research and Development for the funding.

REFERENCES

10. D.Z. Li, “Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants,” Proceedings of the National Academy of Sciences of the United States of America, 2011.

