IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 4 - Issue 1, January 2015 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Atmospheric Ozone And Its Biosphere - Atmosphere Exchange In A Mangrove Forest Ecosystem: A Case Study From Sundarbans, NE Coast Of India

[Full Text]

 

AUTHOR(S)

Manab Kumar Dutta, Rishmita Mukherjee, Dr. Sandip Kumar Mukhopadhyay

 

KEYWORDS

KEYWORDS: atmosphere, exchange flux, India, mangrove, micrometeorology, ozone, Sundarbans.

 

ABSTRACT

ABSTRACT: Temporal variation of atmospheric O3 and its biosphere atmosphere exchange were monitored in the Sundarbans mangrove forest from January 2011 to December 2011 on bimonthly basis. O3 mixing ratios at 10 m and 20 m heights over the forest atmosphere ranged between 14.66 1.88 to 37.90 0.91 and 19.32 6.27 to 39.80 10.13 ppbv, respectively; having maximal premonsoon and minimal monsoon periods. Average daytime O3 mixing ratio was 1.69 times higher than nighttime; indicates significant photo chemical production of O3 in forest atmosphere. Annual averaged O3 mixing ratio in 10 m height was 13.2 % lower than 20 m height; induces exchange of O3 across mangrove biosphere atmosphere interface depending upon micrometeorological conditions of the forest ecosystem. Annual average biosphere atmosphere O3 exchange flux in this mangrove forest environment was 0.441 g m-2 s-1. Extrapolating the value for entire forest surface area, the mangrove ecosystem acts as a sink of 58.4GgO3 annually, indicating significant contribution of Sundarbans mangroves towards regional atmospheric O3 budget as well as climate change.

 

REFERENCES

[1] K. Barrett, Oceanic ammonia emissions in Europe and their trans-boundary fluxes, Atmospheric Environment 32, 1998, 381 391.

[2] H. Berresheim, C. Plass-Dulmer, T. Elste, N. Mihalopoulos, F. Rohrer, OH in the coastal boundary layer of Crete during MINOS: Measurements and relationship with O3 photolysis. Atmospheric Chemistry and Physics 3, 2003, 639649.

[3] P. J. Crutzen, J.-U. Grooss, C. Bruhl, R. Muller, J. M. Russell, A reevaluation of the O3 budget with HALOE UARSdata: No evidence for the O3 deficit. Science 268, 1995, 705.

[4] D. Chand, S. Lal, High O3 at rural site in India. Atmos. Chem. Phys. Discuss. 4, 2004, 3359-3380.

[5] C. Duenas, M.C. Fernandez, S. Canete, J. Carretero, E. Liger, Assessment of O3 variations and meteorological effects in an urban area in the Mediterranean Coast. Science of the Total Environment 299, 2002, 97 - 113.

[6] K. Elampari, T. Chithambarathanu, Diurnal and seasonal variations in surface O3 levels at tropical semi- urban site, Nagercoil, India, and relationships with meteorological conditions. Int. J. Sci. Technol. 1, 2011, 8088.

[7] D.H. Ehhalt, F. Rohrer, Dependence of the OH concentration on solar UV. Journal of Geophysical Research 105, 2009, 3565-3571.

[8] B.J. Finlayson-Pitts, J.N. Pitts, Tropospheric air pollution: O3, airborne toxics, polycyclic aromatic hydrocar bons, and particles. Science 276, 1997, 10451051.

[9] J. Fishman, P. J. Crutzen, The Origin of O3 in the Troposphere. Nature 274, No. 5674, 1978, pp. 855-858.

[10] D. Fowler, J.H. Duyzer,. Micrometerological techniques for the measurement of trace gas exchange. In: (Eds. M. O. Andreae and D. S. Schimel) Exchange of trace gases between terrestrial ecosystems and the atmosphere, John Wiley & Sons Ltd. New York. 1989.pp-189-207.

[11] D. Ganguly, M. Dey, S. Sen, T.K. Jana, Biosphere atmosphere exchange of NOx in the tropical mangrove forest. Journal of Geophysical Research 114, 2009, G04014.

[12] T.R. Hauser, D.W. Bradley, Specific spectrophotometric determination of O3 in the atmosphere using 1, 2-di- (4-pyridyl) ethylene. Analytical Chemistry 38(11), 1986, 15291532.

[13] W.E. Hogsett, J.E. Weber, D. Tingey, A. Herstrom, E.H. Lee, J.A. Laurence, Environmental Auditing: An Approach for Characterizing Tropospheric O3 Risk to Forests. Environmental Management 21, 1997, 105-120.

[14] Intergovernmental Panel on Climate Change (IPCC), In: Houghton, et al. (Ed.), Climate Change 2001: The Scientific Basis, Contribution ofWorking Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, New York, 2001 p. 881.

[15] T. Kozlowski, P.I. Kramer, S.G. Pallardy, The Physiological Ecology of Woody Plants. Academic Press, 1991, London.

[16] S. Lal, Trace gases over the Indian region, Indian Journal of Radio & Space Physics 36, 2007, 556-570.

[17] X. Lin, M. Trainer, S.C. Liu, On the nonlinearity of the tropospheric O3 production. J. Geophys. Res. 93, 1988, 15,879 15,888.

[18] S. Lal, M. Naja, B. H. Subbaraya, Seasonal variation in surface O3 and its precursors over an urban site in India. Atmos. Environ. 34, 2000, 27132724.

[19] M. Naja, S. Lal, Surface O3 and precursor gases at Gadanki (13.5N, 79.2E), a tropical rural site in India. J. Geophys. Res. 107, 2002, doi:10.1029/2001 JD000357.

[20] J. C. Ruiz-Suarez, O. A. Mayora-Ibara, J. Torres-Jimenez, L. G. Ruiz-Suarez, Shortterm O3 forecasting by artificial neural networks. Advances in Engineering Software 23, 1995, 143-149.

[21] R.R. Reddy, K.R. Gopal, K. Narasimhulu, L.S.S. Reddy, K.R. Kumar, Y.N. Ahammed, C.V.K. Reddy, Measurements of surface O3 at semi-arid site Anantapur (14.62 N, 77.65 E, 331 masl) in India. J. Atmos. Chem. 59,2008b, 4759.

[22] S. K. Reddy, B. Raghavendra Kumar, K. Balakrishnaiah, G, Rama Gopal, K. Reddy, R.R. Nazeer, Y. Ahammed, K. Narasimhulu, L. Reddy, S.S. Lal, S, Observational studies on the variations in surface O3 concentration at Anantapur in southern India. Atmospheric Research 98, 2010, 125139.

[23] J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley Publications, New York, 1998, p. 1326.

[24] S. Sillman, The relation between O3, NOx and hydrocarbons in urban and polluted rural environments, Atmos. Environ. 33, 1999, 18211845.

[25] O.A. Tarasova, A. Y. Karpetchko, Accounting for local meteorological effects in the O3 time series of Lovozero (Kola Peninsula). Atmos. Chem. Phys. Discuss 3, 2003, 655676.

[26] G. M. Wolfe, J.A. Thornton, M. McKay, A.H. Goldstein, Forest-atmosphere exchange of O3: Sensitivity to very reactive biogenic VOC emissions and implications for incanopy photochemistry, Atmos. Chem. Phys. Discuss. 11(5), 13, 2011, 38113,424.