IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 8 - Issue 1, January 2019 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Purification Of Synthetic Gas From Undeground Coal Gasification By Absorption

[Full Text]

 

AUTHOR(S)

Hardyanty Dwi Pratiwi, Muhammad Faizal, David Bahrin

 

KEYWORDS

UCG Gasification, Syngas, Absorbtion, K2CO3, Purification

 

ABSTRACT

An Underground Coal Gasification (UCG) Experiment has been modified in a laboratory scale conducted to produce of synthesis gas and to purify of synthetic gas. Synthetic Gas produced from modified UCG reactor composed of hydrogen gas (H2), carbonmonoxide (CO), methane (CH4), are the main gas, mixed with carbondioxide gas (CO2), Nitrogen gas (N2), hydrogen sulfide (H2S) and other gases. All three of hydrogen gas (H2), carbon monoxide (CO), methane (CH4) are combustible gas as a fuel. While non fuel gas containing CO2 is that high enough as one of the undesirable gas. CO2 gas content can reduce heating value from syngas, so do gas absorption CO2 process in syngas using K2CO3 solution with 4 N with concentration 0.5 Litres volume by using column bubble (bubble coulum). Variables used are syngas flow rate by total of air plus oxygen from 5 litre per minute to 15 litre per minute and absorption time 10 to 30 minutes with range 10 minutes. The occur mechanisms is process CO2 absorption by K2CO3 solution and with reaction between the two compounds. The results experiment showed optimal conditions is syngas flowrate 15 litres per minute with total air input 5 litres/minute plus oxygen input 10 litres/minute in 20 minutes time absorption can absorb CO2 gas 25% with escalation gas CH4 content 40.6%mole, syngas caloric value 441.1 Btu/Scf with ratio fuel gas/non fuel gas 1.02.

 

REFERENCES

[1] Kementrian ESDM. (2014).Statistikbatubara. http://prokum.esdm.go.id/Publikasi/Statistik/Statistik%20Batubara.pdf. diakses : 20 juli 2018

[2] Kusumopradono, M. (1994). Potensi Batubara Indonesia. PidatoPengukuhan Ahli Madya. UniversitasDiponegoro : Semarang.

[3] Faizal, M, 2010, Pencampuran Batubara, Laporan Penelitian RUSNAS EnergiTahun 2010.

[4] Yu, C.H., Huang, C. H., dan Tan, C. S., 2012. “ A Review of CO2 Capture by Absorption and Adsorption, Aerosol and Air Quality Research, 12: 745–769, ISSN: 1680-8584 print / 2071-1409 online, doi: 10.4209/aaqr.2012.05.0132

[5] Perry,Robert H,& Green DW.2008. Perry’s Chemical Engineers Handbook. Eight Edition. Mc Graw-Hill. New York.

[6] Vidian, F. 2008. “Gasifikasi Tempurung Kelapa Menggunakan Updraft Gasifier Pada Beberapa Variasi Laju Alir UdaraPembakaran”. Jurnal Teknik Mesin. 10(2) Oktober 2008:88-93

[7] Bhutto, A.W., Bazmi, A.A., dan Zahedim, G., 2013, Underground coal gasification: From fundamentals to applications, Progress in Energy and Combustion Science 39 (2013) 189-214

[8] Budiraharjo, Imam. (2009). AnalisisMikrobatubara,terjemahanbebasdari Coal Science Handbook”, Bab “Sekitan no tetteikenkyuu”, sub bab “Sekitan wo mikuronibunsekisuru” dan “Sekitan wo mikurokaramakuro made kagakusuru”. Japan Coal Energy Center. available from URL :http://imambudiraharjo.wordpress.com/2009/03/11/analisis-mikro-batubara/, diakses : 5 Juli 2018.

[9] Faizal, M, 2008, Pencairan Batubara, LaporanPenelitian RUSNAS EnergiTahun 2008

[10] Faizal, M, 2016, Utilization Biomass and Coal Mixture to Produce Alternative Solid Fuel for Reducing the Green House Gas Emission, SICEST 2016.

[11] Faizal, M., Said, M.dan, Setiabudidaya, D., 2017, “Pengaruh Debit Udara Dan WaktuTerhadapProduksi Synthetic Gas Pada Proses Underground Coal Gasification “ LaporanAkhirPenelitianKompetitif, LPPM Unsri

[12] Harish, K.R.N., Udayakumar, D.L., Stojcevski, A., Oo, A.M.T., 2014, Underground Coal Gasification: an alternate, Economical, and Viable Solution for future Sustainability, International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org , Volume 3, Issue 1, PP.57-68

[13] Higman, C., dan VDM. (2003). Gasification, Oxford : Gulf Professional Publishing.

[14] Kumar, K. Vasanth., Subanandam,K., Ramamurthi,V.danb Sivanesan, S. (2004). Solid Liquid Adsorption for Wastewater Treatment : Principle Design and Operation.India : Departement of Chemical Engineering – A.C. College of Technology, Anna University.

[15] Lili, M., Meijun, W., Huimin, Y., Hongyan, Y., dan Lipping, C. (2011). Catalytic effect of alkali carbonates on CO2 gasification of Pingshuo Coal. Minning Science and technology, 21. Pp, 587-590.

[16] Nahas, N.C. (1983). Exxon Catalytic coal gasification procces: Fundamental to flowsheets. Fuel, 62. Pp, 39-41.

[17] Porada, S. Czerski, G., Dziok, T., Grzywacz, P. dan, Makowska, D., 2015, Kinetics of steam gasification of bituminous coals in terms of their use for underground coal gasification, Fuel Processing Technology 130 (2015) 282–291

[18] Prabu, V., Jayanti, S, 2012, Laboratory scale studies on simulated underground coal gasification of high ash coals for carbon-neutral power generation, Energy, Vol. 46, Issue 1, October 2012, pp. 351–358, http://doi.org/10.1016/j.energy.2012.08.016

[19] Rochyani, et all 2014, Study on Environment Characteristics for Mining Management at East Pit 3 West Banko Coal Mine, IJASEIT, Vol.4 (2014) No. 3, ISSN: 2088-5334, pp.45-48
[20] Smolinski, A. (2011). Coal char as a fuel selection criterion for coal-based hydrogen-rich gas production in the procces of steam gasification. Energy Conversion and Management, 52. Pp, 37-45.

[21] Sun, Zhiqiang; Wu, Jinhu; Wang, Yang dan Zhang, Dong-ke. (2005a). Methane Cracking over a Chinese Coal Char in a Fixed-Bed Reactor. 5th Asia-Pacific Conference on Combustion. The University of Adelaide. Australia.

[22] Sun, Zhiqiang; Wu, Jinhu; Wang, Yang dan Zhang, Dong-ke. (2005b). Methane and Carbon Dioxide Reactions over a Chinese Coal Char in a Fixed-Bed Reactor. 5th Asia-Pacific Conference on Combustion. The University of Adelaide, Australia.

[23] Tristantini, D., et al (2005). A study of hydrocarbon production via Fischer-Tropsch (FT) synthesis from different model bio-syngas over un-promoted and rhenium-promoted alumina supported cobalt catalysts, Proceeding of The Synbios Conference, Stockholm, Sweden, May 18-20, 2005.

[24] Tristantini, D., et al (2007a). The effect of synthesis gas composition on the Fischer-Tropsch synthesis over Co/γ¬Al2O3 and Co-Re/γ-Al2O3 catalysts, Fuel Processing Technology, 88. Pp. 643-649.

[25] Tristantini, et al (2007b) Effect of Water Addition On Direct Use Of H2¬Poor Bio-Syngas Model In Fischer-Tropsch Synthesis Over Co/Al2O3 Catalyst, Proceeding of 14th Regional Symposium on Chemical Engineering 2007 ISBN 978-979-16978-0-4, Dec. 4-5, 2007.

[26] Vorres, K.S. (1986). Mineral Matter and Ash in Coal. American Chemical Society, Symposium Series 302. Washington.

[27] Wang, J., Jiang, M., Yao, Y., Zhang, Y., dan Cao, J. (2009a). Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane. Fuel, 88. Pp, 1572-1579.

[28] Wang, J., Jiang, M., Yao, Y., dan Cao, J. (2009b). Enhanced catalysis of K2CO3 for steam gasification of coal char by using Ca(OH)2 in char preparation. Fuel, 89. Pp, 310-317.

[29] Yu, J., Tian, F.J., Chow, M.C., McKenzie, L.J., Li,dan C.Z. (2006). Effect on iron on the gasification of Victorian brown coal with steam: enhnancement of hydrogen production. Fuel, 85. Pp, 127-133.

[30] Zhang, L.X., Huang, J.J., Fang, Y.T., Wang, dan Y. (2005). Effect of mineral matter on gasification and activation of typical Chinese anthracite chars. J Taiyuan UnivTechnol, 34(5). Pp, 85-90