International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 9 - Issue 2, February 2020 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Nutrient Content Of Soybean Varieties Under Dry Land Conditions As Affected Of Technological Packages Application

[Full Text]



Yaya Hasanah, Hamidah Hanum



soybean, dryland condition, nutrient, technological package



The content of N, P and K for some variants of soybeans can be influenced by the technological packages used under dryland conditions. The objective of the research was to determine the content of N, P, K of shoot soybean cultivars with the application of the technological packages under dryland conditions. This research used a Factorial Randomized Block Design with 2 factors and 3 replications. The first factor was soybean cultivars (Demas, Anjasmoro, Dering, Devon). The second factor was the use of soybean cultivation technology packages on dryland (package 1, package 2 and package 3). The parameters of observations were N, P and K content of shoot soybean varieties. Data were analyzed using the ANOVA procedure, the SAS version 12 computer program and comparison of means were tested for significance using Duncan Multiple Range Test (DMRT) p = 0.05. There is a difference in the response of soybean varieties to the application of the technological package used. The use of the P3 technology package (fertilizer (Urea 25 kg / ha), inoculant B. japonicum 200 g / 40 kg of seed, SP-36 250 kg / ha, KCl 150 kg / ha, spacing 40 cm x 20 cm, dolomite 2,000 kg / ha, farmyard manure 5 tons/ha, maximum tillage , ascorbic acid antioxidant 300 ppm) in the Anjasmoro variety produced the highest P and K content, while the use of the P2 technology package (Fertilizer (Urea 25 kg / ha), inoculant B. japonicum 200 g / 40 kg of seed, SP-36 150 kg / ha, KCl 100 kg / ha, dolomite 1,000 kg / ha, spacing of 40 cm x 20 cm, farmyard manure 2 tons / ha, maximum tillage, ascorbic acid antioxidant 200 ppm) in Dering variety produced the highest N plant content. It concluded that the best treatment for increasing the content of P and K for Anjasmoro variety is the application of the P3 technological package (SP-36 150 kg/ha, KCl 100 kg/ha), but the application of P2 technological package in Dering increased the N content



Alfi, A.N. 2017. Pemerintah Pacu Produksi Kedelai Lokal. https://www.industri.bisnis.com › Industri › Agribisnis. Accesed date 20 Januari 2018.
[2] Balai Penelitian Aneka Kacang dan Umbi. 2015. Info Teknologi : Demas 1 Varietas Kedelai Adaptif Lahan Kering Masam. Malang. 1 p.
[3] Balemi, T. and K. Negisho. 2012. Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. J. Soil Sci. Plant Nutr. 12 (3), 547-562. http://dx.doi.org/10.4067/S0718-95162012005000015.
[4] Biell, W., D. Gaweda, Anna Jaroszewska, Grzgorz Hury. 2018. Content of minerals in soybean seeds as influenced by farming system, variety and row spacing. J. Elem., 23(3): 863-873. DOI: 10.5601/jelem.2017.22.3.1483
[5] Chennupati, P., P. Seguin, R. Chamoun and S. Jabaji, 2012. Effects of high-temperature stress on soybean isoflavone concentration and expression of key genes involved in isoflavone synthesis. J. Agric. Food Chem., 60: 12421-12427. doi: 10.1021/jf3036319.
[6] Devi K.N., Singh, T.B., Athokpam, H.S., Singh N.B., Shamurailatpam D. 2013. Influence of inorganic, biological and organic manures on nodulation and yield of soybean (‘Glycine max Merril’ L.) and soil properties (online). AJCS, 7(9): 1407-1415.
[7] Fageria, N. K.; Moreira, A.; Coelho, A. M. 2011. Yields and Yield Components of Upland Rice as influenced by nitrogen sources. J. of Plant Nutrition, Philadelphia 34(1): 361-370.
[7] Hasanah, Y. and M. Sembiring. 2018. Role of Elicitors in Chlorophyll Content and Stomatal Density of Soybean Cultivars by Foliar Application. J. Agron., 17 (2): 112-117. DOI: 10.3923/ja.2018.112.117
[8] Hasanah, Y. and M. Sembiring. 2018. Effect of foliar application of chitosan and salicylic acid on the growth of soybean (Glycine max (L.) Merr.) varieties. IOP Conf. Series: Earth and Environmental Science 122 (2018) 012027 doi :10.1088/1755-1315/122/1/012027

[9] Hasanah, Y., Siregar, L.A.M. and Mawarni, L., 2018. Role of Elicitors Foliar Application in Increasing Isoflavone Content of Two Soybean Cultivars. J. Agron., 17 (2): 106-111. DOI: 10.3923/ja.2018.106.111
[10] Hasanah, Y., T.C. Nisa, H. Armidin and H. Hanum. 2015. Isoflavone content of soybean [Glycine max (L). Merr.] cultivars with different nitrogen sources and growing season under dry land conditions. J. Agric. Environ. Int. Dev., 109: 5-17. https://doi.org/10.12895/jaeid.20151.216
[12] Hasanah, Y., T.C. Nisa, Hapsoh and H. Hanum. 2014. Growth Analysis Of Soybean Varieties At Dry Land With Application Of Nitrogen Sources. International Journal of Scientific & Technology Research 3(6):123-126.
[13] Hasanah, Y., T.C. Nisa, Hapsoh and H. Hanum. 2018. Physiological characters of soybean cultivars with application of nitrogen sources under dryland conditions. IOP Conf. Series: Earth and Environmental Science 122 (2018) 012055 doi :10.1088/1755-1315/122/1/012055
[14] Hasanah, Y., H. Hanum and A.S Hidayat. 2019a. Chlorophyll content and stomatal density of soybean varieties on technological packages application under dry land conditions. IOP Conf. Series: Earth and Environmental Science 260 (2019) 012165. IOP Publishing doi:10.1088/1755-1315/260/1/012165
[15] Hasanah, Y.,L. Mawarni, H. Rusmarilin. 2019. Physiological Characteristics of Binahong (Anredera cordifolia (Ten.) Steenis) on Application of Natural Plant Growth Regulator. Asian J. Plant Sci., 18 (3): 117-122. DOI: 10.3923/ajps.2019.117.122
[16] Homer, E.R. 2008. The effect of nitrogen application timing on plant available phosphorus. Thesis. Graduate School of The Ohio State University. USA.
[17] Leghari, S.J., N.A. Wahocho, G.M. Laghari, K.H. Talpur, S.A Wachoco and A.A. Lashari. 2016. Role of Nitrogen for plant growth and development : A review Advances in Environmental Biology (Jordon), 10(90:209-1018.
[18] Liferdi, L. 2000. Analisis Jaringan Daun sebagai Alat untuk Menentukan Status Hara Fosfor pada Tanaman Manggis (Analysis of Leaf tissue as a Tool for Determining the Status of Phosphorus Nutrients in Mangosteen Plants). J. Hort. 19(3):324-333, 2009
[19] Patisaul, H. B. and W. Jefferson. 2010. The pros and cons of phytoestrogens. Frontiers in Neuroendocrinology, 31(4), 400–419. DOI: 10.1016/j.yfrne.2010.03.003.
[20] Phommalth, S., Y.S. Jeong, Y.H., Kim, K.H. Dhakal and Y.H. Hwang, 2008. Effects of light treatment on isoflavone content of germinated soybean seeds. J. Agric. Food Chem., 56: 10123-10128. doi: 10.1021/jf802118g
[21] Razaq M, Zhang P, Shen H-l, Salahuddin (2017) Influence of nitrogen and phosphorous on the growth and root morphology of Acer mono. PLoS ONE 12(2): e0171321. https://doi.org/10.1371/journal.pone.0171321
[22] Richardson AE, TS George, M Hens and RJ Simpson. 2005. Utilization of soil organic phosphorus by higher plants. In: BL Turner, E Frossard and DS Baldwin (Eds). Organic Phosphorus in the Environment. CABI Publishing. Wallingford. UK.
[23] Selvia, I.N, A. Sahar and Y. Hasanah. 2019. Growth response and N uptake of two soybean varieties on inoculation of Bradyrhizobium sp. in Ultisol Binjai, Sumatera Utara. IOP Conf. Series: Earth and Environmental Science 260 (2019) 012129. IOP Publishing doi:10.1088/1755-1315/260/1/012129
[24] Smith, P.F. 1962. Mineral Analysis in Plant Tissue. Annu. Rev. Plant Physiol. 13:81-108.
[25] Sri, N.C. 2018. Nitrogen Determination by Kjeldahl Method. Pan Reac Appli Chem ITW Reagents.
[26] Takagi, A., M. Kano, and C. Kaga. 2015. Possibility of Breast Cancer Prevention: Use of Soy Isoflavones and Fermented Soy Beverage Produced Using Probiotics. International Journal of Molecular Sciences, 16(5), 10907–10920. DOI:10.3390/ijms160510907
[27] Wang YP, BZ Houlton and CB Field. 2007. A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochemical Cycles 21, 1018-1029. https://doi.org/10.1029/2006GB002797
[28] Wang Z,H., Li S.X., Malhi, S. 2008. Effects of fertilization and other agronomic measures on nutritional quality of crops. J. Sci. Food Agric., 88: 7-23. DOI: 10.1002/jsfa.308.
[29] Wang, Q., X. Ge, X. Tian, Y. Zhang, J. Zhang and P. Zhang. 2013. Soy isoflavone: The multipurpose phytochemical (Review). Biomedical Reports, 1(5), 697–701. DOI:10.3892/br.2013.129
[30] Xuan, C., D. Harrell, A. Cox, J.A. Davis. 2018. Effects of Potassium Fertilizer Rates on Soybean Looper (Lepidoptera:Noctuidae) Development. Journal of Economic Entomology, 11(4): 1745-1750. https://doi.org/10.1093/jee/toy159
[31] Yoon, G.-A., & Park, S. 2014. Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutrition Research and Practice, 8(6), 618–624. DOI: 10.4162/nrp.2014.8.6.618
[32] Yoshida, S., D.A. Forno, J.H. Cock, and K.A. Gomez. 1972. Laboratory Manual for Physiological Studies of Rice. Second Edition. Los Banos. IRRI, Laguna, Philippines. 70 p
[33] Zheng, X, S.K. Lee and O.K. Chun. 2016. Soy Isoflavones and Osteoporotic Bone Loss: A Review with an Emphasis on Modulation of Bone Remodeling. J. Med. Food, 19(1), 1–14. DOI:10.1089/jmf.2015.0045