IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 9 - Issue 3, March 2020 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Intergrated Approach Of Tsunami Vulnerability Assessment At Coastal Area Of Kalianda Sub District, South Lampung District, Lampung Province, Indonesia

[Full Text]

 

AUTHOR(S)

Muhammad Helmi, Yola Hardiyani Pholandani, Heryoso Setiyono, Anindya Wirasatriya, Warsito Atmodjo, Rikha Widyaratih, Agus Anugroho Dwi Suryoputro

 

KEYWORDS

tsunami, numerical model, geospastial, vulnerability, and Lampung.

 

ABSTRACT

Kalianda Subdistrict is a densely populated area located in the coastal area of South Lampung District, Lampung Province. Its location is only 323.6 km to the confluence zone of the tectonic plate of Sunda Strait Megathrust which makes this area is vulnerable from the tsunami disaster. The present study aims to simulate the tsunami wave propagation from the epicenter to the coastal area of Kalianda by using a numerical 2D model and to produce a tsunami vulnerability index map of Kalianda Subdistrictce by using geospatial modeling. The simulation result shows that 35 minutes after the tectonic earthquake, sea level drops for 40 minutes. The lowest sea level is -4.8 m from MSL at 73th minutes after the earthquake. After that, the first tsunami wave is formed at 84th minutes after the earthquake reaching 8.5 m height. Sea level drops slightly before the second tsunami wave occurs after at 93rd minutes after the earthquake reaching 12.5 m height. The tsunami vulnerability index map shows that the middle part of the coastal area of Kalianda is the most vulnerable area. It has the level of vulnerable and very vulnerable. The areas categorized as vulnerable observed until 5 km to the land. This area is coastal plain with low and flat elevation and the morphology of this area is a gulf shape. This research also manages to identify evacuation sites. The evacuation sites spread close to the vulnerable areas which easily can be reached by the people during tsunami attack..

 

REFERENCES

[1] Bryant, E. 2014. Tsunami Dynamic. Tsunami: The Tsunami Hazard. ISBN: 978-3-319-06132-0. pp: 19-32
[2] Cecioni, C., G. Bellotti, A. Romano, A. Abdolali, P. Sammarco, L. Franco. 2014. Tsunami Early Warning System Based on Real-time Measurements of Hydro-acoustic Waves. Procedia Engineering 70. pp: 311-320
[3] Hayes, G. P., D. J. Wald, R. L. Johnson. 2012. A Three-dimensional Model of Global Subduction Zone Geometries. Journal of Geophysical Research. Vol: 117. pp: B01302.
[4] Strusinska-Correia, A. 2017. Tsunami Mitigation in Japan After the 2011 Tohoku Tsunami. International Journal of Disaster Risk Reduction 22. pp: 397-411.
[5] Irsyam, M., S. Widiyantoro, D.H. Natawidjaja, I. Meilano, A. Rudyanto, S. Hidayati, W. Triyoso, N.R. Hanifa, D. Djarwadi, L. Faizal, and Sunarjito. 2017. Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017.
[6] Badan Pusat Statistik. 2018. Kecamatan Kalianda Dalam Angka 2018. BPS Kabupaten Lampung Selatan. ISBN: 978-602-6818-79-9
[7] Rashidi, A., Z. H. Shomali, D. Dutykh, N. K. F. Khah. 2018. Evaluation of Tsunami Wave Energy Generated by Earthquakes in the Makran Subduction Zone. Ocean Engineering 165. pp: 131-139.
[8] Tanioka, Y., and A. R. Gusman. 2018. Near-field Tsunami Inundation Forecast Method Assimilating Ocean Bottom Pressure Data: A Synthetic Test for the 2011 Tohoku-Oki Tsunami. Physics of the Earth and Planetary Interiors 283. pp: 82–91.
[9] Guler, H. G., C. Baykal, T. Arikawa, A. C. Yalciner. 2018. Numerical Assessment of Tsunami Attack on A Rubble Mound Breakwater Using OpenFOAM®. Applied Ocean Research 72. pp: 76–91.
[10] Anwar, K., M. R. Muskananfola, M. Helmi. 2018. Spatial Analysis of Tsunami Threat Level in The Coastal of Jember Regency, East Java, Indonesia. Asian Journal of Microbiology, Biotechnology, and Environmental Sciences. Vol: 205. Issue: 4. pp: 1153-1162.
[11] Muhammad, A., and K. Goda. 2018. Impact of Earthquake Source Complexity and Land Elevation Data Resolution on Tsunami Hazard Assessment and Fatality Estimation. Computers and Geosciences 112. pp: 83–100.
[12] Hartoko, A., M. Helmi, M. Sukarno, Haryadi. 2016. Spatial Tsunami Wave Modelling for the South Java Coastal Area, Indonesia. International Journal of GEOMATE. Vol: 11. Issue: 25. pp: 2455-2460.
[13] Satriadi, A., M. Helmi, R. Redyansah. 2018. Numerical Modeling of Tsunami in Jember Regency. Asian Journal of Microbiology, Biotechnology, and Environmental Sciences. Vol: 20. Issue: 3. pp: 786-790.
[14] Al’ala, M., S. Syamsidik, T. M. Rasyif, M. Fahmi. 2015. Numerical Simulation of Ujong Seudeun Land Separation Caused by the 2004 Indian Ocean Tsunami, Aceh-Indonesia. Journal of Tsunami Society International. Vol: 34. No: 3. pp: 159-172.
[15] Syamsidik, S., M. Al’ala, H. M. Fritz, M. Fahmi, T. M. Hafli. 2018. Numerical Simulations of the 2004 Indian Ocean Deposits Thicknesses and Emplacements. Natural Hazards and Earth System Sciences. Discuss., https://doi.org/10.5194/nhess-2018-348.
[16] Syamsidik, T. M. Rasyif, S. Kato. 2015. Development of Accurate Tsunami Estimated Times of Arrival for Tsunami-Prone Cities in Aceh, Indonesia. International Journal of Disaster Risk Reduction 14. pp: 403-410.
[17] Helmi, M., A. Satriadi, A. A. D. Suryoputro, J. Marwoto, H. Stiyono, and Hariyadi, 2018, “Rehabilitation Priority Area Assessment on Death Coral using Cell Based Modeling Approach at Parang Islands, Karimunjawa National Park, Indonesia”, International Journal of Civil Engineering and Technology (IJCIET), IAEME Publication, Vol. 9, No. 11, pp. 2949–2961.
[18] Fitriyanto, B. R., M. Helmi, and Hadiyanto. 2019. Analyzing spatiotemporal types and patterns of urban growth in watersheds that flow into Jakarta Bay, Indonesia, Remote Sensing Applications: Society and Environment 14 (2019) 170–177
[19] Wang, X. 2009. User Manual for COMCOT Version 1.7 (First Draft). Computer Programs for Tsunami Propagation and Inundation, Cornell University. pp. 26.
[20] United States Geological Survey. 2019. USGS Search Earthquake Catalog. https://earthquake.usgs.gov/. Accesed: April 2nd, 2019.
[21] Wang, X. and Liu, P. L. F. 2007. Numerical Simulations of the 2004 Indian Ocean Tsunamis – Coastal Effects. Journal of Earthquake and Tsunami. Vol: 1. Issue: 3. pp: 273-297.
[22] Sinaga, T. P. T., A.Nugroho, Y. W. Lee, and Y. Suh. 2011. GIS Mapping of Tsunami Vulnerability: Case Study of the Jembrana Regency in Bali, Indonesia. KSCE Journal of Civil Enginering, 15 (3): 537-543.
[23] Zuidam, R.A.V. 1985. Aerial Photo-Interpretation in Terrain Analysis and Geomorphologic Mapping, Smits-Publishers, The Hague Netherland p:442.
[24] Briggs, R.W., D.H. Natawidjaja, J. Galetzka, and Y.J. Hsu. 2006. Deformation and Slip Along the Sunda Megathrust in the Great 2005 NiasSimeulue Earthquake. Science Vol. 311. pp 1897 - 1901. DOI: 10.1126/science.1122602
[25] Lowrie, W. 2007. Fundamentals of Geophysics. Cambridge: Cambridge University Press.