IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 2- Issue 2, February 2013 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Temperature Analysis for Designing a New High-Powered Strontium Bromide Laser

[Full Text]

 

AUTHOR(S)

Iliycho Petkov Iliev

 

KEYWORDS

Index Terms: - Analytical model, free convection, heat conduction, gas temperature, radial heat flow, SrBr2 laser, strontium bromide laser, vapour laser.

 

ABSTRACT

Abstract: - In this paper a complete thermal model of the radial heat flow for a high-powered He-SrBr2 laser is obtained. The model is based on a general analytic solution of the steady-state heat conduction equation subject to mixed boundary conditions for the arbitrary form of the volume power density in the internal laser tube, combined with nonlinear boundary value conditions in the rest part of the composite tube. The model does not require experimental values of the wall temperatures. It is applied for designing of a new high-powered SrBr2 laser. The influence of the diameter of the outer insulation and the heat conductivity coefficient of the medium between the two tubes at maintenance of the optimal gas temperature is investigated.

 

REFERENCES

[1] B.L. Pan, Z.X. Yao and G. Chen, “A discharge –excited SrBr2 vapour laser,” Chin. Phys. Lett., vol. 19, no. 7, pp. 941-943, 2002.

[2] G.M. Peavy, L. Reinisch, G.T. Rayne, and V. Venugopalan, “Comparison of cortical bone ablations by using infrared laser wavelength 2.9 to 9.2 μm, “ Laser Surg. Med., vol. 25, pp. 421-434, 1999.

[3] J.M. Auerhammer, R. Walker, A.F.G. van der Meer, and B. Jean, “Dynamic behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX,” Appl. Phys. B- Lasers Opt., vol. 68, pp. 111-119, 1999.

[4] A.V. Platonov, A.N. Soldatov, and A.G. Filonov, “Pulsed Strontium Vapor Laser,” Sov. J. Quantum Electon., vol. 8, pp. 120-121, 1978.

[5] A.N. Soldatov, A.G. Filonov, A.S. Shumeiko, A.E. Kirilov, B. Ivanov, R. Haglund, M. Mendenhall, B. Gabella, and I. Kostadinov, “A Sealed-Off Strontium Vapor Laser,” in: Atomic and Molecular Pulsed Lasers V, V.F. Tarasenko, Ed., Proc. of SPIE, vol. 5483, pp. 252-261, 2004.

[6] K.A. Temelkov, N.K. Vuchkov, B.L. Pan, N.V. Sabotinov, B. Ivanov, and L. Lyutov, “Strontium atom laser excited by nanosecond pulsed longitudinal He-SrBr2 discharge,” J. Phys. D: Appl. Phys., vol. 39, pp. 3769-3772, 2006.

[7] K.A. Temelkov, N.K. Vuchkov, B.L. Pan, N.V. Sabotinov, B. Ivanov, and L. Lyutov, “Strontium bromide vapor laser excited by a nanosecond pulsed longitudinal discharge,” Proc. 14th International School on Quantum Electronics: Laser Physics and Applications, P.A. Atanasov, T.N. Dreischuh, S.V. Gateva,and L.M. Kovachev, Eds., Proc. of SPIE, vol. 6604, pp. 660410-1, 2007.

[8] K.A. Temelkov, N.K. Vuchkov, I. Freijo-Martin, A. Lema, L. Lyutov, and N.V. Sabotinov, “Experimental study on the spectral and spatial characteristics of a high-power He-SrBr2 laser,” J. Phys. D: Appl. Phys., vol. 42, no. 115105, pp. 1-6, 2009.

[9] K.A. Temelkov, N.K. Vuchkov, B. Mao, E.P. Atanasov, L. Lyutov, and N.V. Sabotinov, ”High-power Sr atom laser excited in nanosecond pulsed longitudinal He-SrBr2 discharge,” IEEE J. Quant. Electron., vol. 45, no. 3, pp. 278-281, 2009.

[10] I.P. Iliev, S.G. Gocheva-Ilieva, K.A. Temelkov, N.K. Vuchkov, and N.V. Sabotinov, “Analytical model of temperature profile for a He-SrBr2 laser, Optoelectron. Adv. Mater., vol. 11, no 11, pp. 1735-1742, 2009.

[11] I.P. Iliev, S.G. Gocheva-Ilieva, K.A. Temelkov, N.K. Vuchkov, and, N.V. Sabotinov, “An improved radial temperature model of a high-powered He-SrBr2 laser,” Opt. Laser Technol., vol. 43, pp. 642-647, 2011.

[12] M.N. Özişik, Heat Transfer. A Basic Approach, Boston: McGraw-Hill, 1985.

[13] Tables of Physical Quantities, I.K. Kikoin, Ed., Moscow: Atomizdat, 1976 (in Russian).

[14] I.P. Iliev, and S.G. Gocheva-Ilieva, “Model of the radial gas temperature distribution in a copper bromide vapour laser,” Quantum. Electron., vol. 40, pp. 479-483, 2010.

[15] J.F. Waymouth, Electric discharge lamps, Cambridge, Massachusetts and London: The M.I.T. Press, 1971.

[16] I.I. Klimovskij, and L.A. Selezneva, “Effect of the non uniformity of the discharge in the gas temperature in copper vapor lasers operating under periodical pulse conditions,” Teplofizika vysokih temperatur, vol. 23, pp. 667-672, 1985 (in Russian).