IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 2- Issue 2, February 2013 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



A Review Of Machine Learning Techniques And Statistical Models In Anaemia

[Full Text]

 

AUTHOR(S)

Jameela Ali, AbdulRahim Ahmad, Loay E. George, Chen Soong Der,Sherna Aziz

 

KEYWORDS

Index Terms: - Artificial neural networks, support vector machines, statistical models, Anaemic Red Blood Cell, cross validated

 

ABSTRACT

Abstract:- Blood diseases have in the recent past become a major cause of mortality and morbidity all over the world. Consequently, machine learning has emerged as one of the best and most fruitful methods of research in the present world, both in terms of proposing of new techniques with effective theoretical algorithms, and also in applying such methods in real life situations. From a technological view, it is evident that there are major changes in the world that occur at an ever increasing pace. This has seen the development of systems which can be easily adapt to the environment in an effective way by being practically applicable. These systems work through optimizing performance using certain algorithm in accordance with its maximization or minimization criteria, but also using experimental data instead of a given program. This study will identify the use of artificial neural networks, support vector machines and statistical models and methods in the recognition of iron deficiency that leads to anaemic conditions.

 

REFERENCES

[1]. Abedini, R., Zanganeh, I., & Mohagheghian, M. (2011). Simulation and Estimation of Vapor-Liquid Equilibrium for Asymmetric Binary Systems (CO2-Alcohols) Using Artificial Neural Network. Journal of Phase Equilibria and Diffusion, 32(2), 105-114

[2]. Abdolmaleki, P., Buadu, L. D., Murayama, S., Murakami, J., Hashiguchi, N., Yabuuchi, H., &

[3]. Masuda, K. (1997). Neural network analysis of breast cancer from MRI findings. Píloha diplomové práce, 15(5) 283-93.

[4]. Adams , D.C. (2010). Parallel evolution of character displacement driven by competitive selection in terrestrial salamanders. BMC Evolutionary Biology, 10(72), 1-10

[5]. Anagnostou, T., Remzi, M., Lykourinas, M., & Djavan, B. (2003). Artificial neural networks for decision-making in urologic oncology. Eur Urol, 43(6). 596-603

[6]. Atkov, Y. O., Gorokhova, G. S., & Sboev, G. A. (2012). Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters. Journal of cardiology, doi:10.1016/j.jjcc.2011.11.005

[7]. Baxt, W. G., Shofer, F. S,, Sites, F. D., & Hollander, J. E. (2002). A neural computational aid to the diagnosis of acute myocardial infarction. Ann Emerg Med, 39(4):366-73.

[8]. Basak, D., Pal, S., & Patranabis, D. C. (2007). Support Vector Regression. Neural Information Processing – Letters and Reviews, 11(10). 203-224

[9]. Benke, S. K., & Fallin, D. M. (2010) Methods: Genetic Epidemiology. Clinics in Laboratory Medicine, 30(4), 795-814

[10]. Bornn, L., Farrar, C.R., & Park, G. (2010). Damage Detection in Initially Nonlinear Systems. International Journal of Engineering Science, 48, 909-920

[11]. Bornn, L., & Tabet, A. (2010). Comment on "Particle Markov Chain Monte Carlo Methods". Journal of the Royal Statistical Society Series B, 72, 269-342

[12]. Cortes, C., & Vapnik, N. V. (1995). Support-Vector Networks. Journal Machine Learning, 20(3). Doi: 10.1023/A:1022627411411

[13]. El-Zammar, D., Yan, M., Huang, C., Fang, D., Petigara, F., Bornn, L., & Ngai, T. (2011) Assessment and Management of Anaemia in a Population of Children Living in the Indian Himalayas: A Student-Led Initiative. UBC Medical Journal, 2(2), 12-18

[14]. Hannan, S. A., Bhagile, D. V., Manza, R. R., & Ramteke, J. R. (2010). Development of an Expert System for Diagnosis and appropriate Medical Prescription of Heart Disease Using SVM and RBF. International Journal of Computer science and Information security, 8(5). 122-201

[15]. Hong, D. W., Ji, F. Y., Wang, D., Chen, Z. T., & Zhu, H. Q. (2011). Use of artificial neural network to predict esophageal varices in patients with HBV related cirrhosis. Hepatitis monthly, 11(7). 544-547

[16]. Jorgensen, J. A., & Pirmohamed, M. (2011). Risk modeling strategies for pharmacogenetic studies. Pharmacogenomics 12(3), 397-410

[17]. Kenji Suzuki. (2011). Artificial Neural Networks- Methodological Advances and Biomedical Applications. Introduction to the Artificial Neural Networks. Retrieved from

[18]. Kopple, D. J., & Massry, G. S. (2004). Kopple and Massry's nutritional management of renal disease. Philadelphia: Lippincott Williams & Wilkins. Print.

[19]. Lisboa, P. J. G. (2004). Neural networks in medical journals: current trends and implications for BioPattern. Proc. 1st European Workshop on Assessment of Diagnostic Performance (EWADP), 7(9). 99-112

[20]. Magalhães, R. J. S., & Clements, A. C. A. (2011). Mapping the Risk of Anaemia in Preschool-Age Children: The Contribution of Malnutrition, Malaria, and Helminthes Infections in West Africa. PLoS Med, 8(6) doi:10.1371/journal.pmed.1000438

[21]. Mandal, I., & Sairam, N. (2012). Accurate Prediction of Coronary Artery Disease Using Reliable Diagnosis System. Journal of Medical Systems, 2(3). 93-235 DOI: 10.1007/s10916-012-9828-0

[22]. Min, L., Wu, W., Joseph, R., Fulton, D.B., Berg, L., & Andreotti, A.H. (2010). Disrupting the intermolecular self-association of Itk enhances T cell signaling. Journal of Immunology, 184, 4228-4235

[23]. Nasr, B. M., & Chtourou, M. (2010).Training recurrent neural networks using a hybrid algorithm. Neural Computing & Applications. 21(1), 1-203

[24]. Quaglini, S., Barahona, P., & Andreassen, S. (2001). Artificial intelligence in medicine: 8th Conference on Artificial Intelligence in Medicine in Europe. Berlin: Springer. Print.

[25]. Ranganath, H., & Gunasekaran, N. (2004). "Artificial Neural Network Approach in Estimation of Hemoglobin in Human Blood." International Computer Engineering Conference on New Technologies for the Information Society, ICENCO, Cairo, 341-344

[26]. Shi, H., Lu, Y., & Du, J. (2011). Application of Back Propagation Artificial Neural Network on Genetic Variants in Adiponectin ADIPOQ, Peroxisome Proliferator-Activated Receptor-γ, and Retinoid X Receptor-α Genes and Type 2 Diabetes Risk in a Chinese Han Population. Diabetes technology & therapeutic., doi:10.1089/dia.2011.0071
[27]. Shukla, A., Tiwari, R., & Kala, R. (2010). Towards Hybrid and Adaptive Computing. Studies in Computational Intelligence, 307, 31-58

[28]. Tahmasebi, P., & Hezarkhani, A. (2011). Application of a Modular Feedforward Neural Network for Grade Estimation. Natural Resources Research. 20(1). 25-32

[29]. Tong, L. L. D., & Schierz, C. A. (2011). Hybrid genetic algorithm-neural network: feature extraction for unpreprocessed microarray data. Artificial intelligence in medicine, 53(1). 47-56 doi:10.1016/j.artmed.2011.06.008

[30]. Wehe, Chang, W.-C., Eulenstein, O., & Aluru, S. (2010). A scalable parallelization of the gene duplication problem. Journal of Parallel and Distributed Computing, 70, 237-244.

[31]. Xu, M., Brar, H., Grosic, S., Palmer, R., & Bhattacharyya, M.K. (2010). Excision of an active CACTA-like transposable element from DFR2 led to variegated flowers in soybean. Genetics: 184, 53-63.

[32]. Zahir, S., Rejaul, G. C. & Payne, W. (2006). "Automated Assessment of Erythrocyte Disorders Using Artificial Neural Network". IEEE International Symposium on Signal Processing and Information Technology, Vancouver, 776-780.

[33]. Zhang, X., Wang, Z., Tang, L., Sun, Y., Cao, K., & Gao, Y. (2011). Support vector machine model for diagnosis of lymph node metastasis in gastric cancer with multidetector computed tomography: a preliminary study. BMC cancer. Retrieved from

[34]. Zhang, G. P. (2000). Neural Networks for Classification: A Survey. IEEE Transactions on Systems, Man, and Cybernetics—Part C: Applications And Reviews, 30(4). 451-462

[35]. Zhang, Q., & Rutgers The State University of New Jersey - New Brunswick. Graduate School - New Brunswick. (2008).Maternal anaemia and adverse pregnancy outcomes. Michigan: ProQuest