IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 3- Issue 3, March 2014 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Conductance And Ion-Association Studies Of Lipic In (PC+THF) At Different Mixtures

[Full Text]

 

AUTHOR(S)

Dr. Ashoke Hazra

 

KEYWORDS

Key words: conductance, ion-association constant, limiting equivalent conductance, Li-Picrate, (PC+THF) mixture, solubility,temperature.

 

ABSTRACT

Abstract: Conductance of Li-Picrate was measured in different temperatures (250C, 350C, 450C). The limiting equivalent conductance (0) and the ion-association constant (KA) for Li-Picrate in ( PC+THF ) solvents at different percentage were evaluated using Debye-Huckel Onsager equation. It is observed that the limiting equivalent conductance increased linearly with the increase in temperature and the association constant values decreased with rise in temperature. Thermodynamic parameters (i.e, G0 , H0 , S0 ) are estimated from the temperature dependence of the ion-association constant . The positive values of S0 and positive values of  H0 indicate the ion-association process occurred spontaneously as well as endothermic at all respective temperature. Supported by absorbance data from this primary study, it may be concluded that room temperature solubility of Li-Picrate in mixed ( PC+THF ) solvents at different percentage is higher than the higher temperatures. Conductivity data helps us to concluded that if we go from room temperature to higher temperature conductance increases for Li-Picrate in ( PC+THF ) solvents at different percentage. It is due to the switch over of ion-pair to ionic dissociation of Li-Picrate salt.

 

REFERENCES

[1]. A. Hazra, International J. S. T. R., Vol. 2(4), pp. 99, 2013.

[2]. G. H. Zimermann and R. H. Wood, J. Solution Chem., 31, pp. 995, 2003.

[3]. A. V. Sharygin, R. H. Wood, G. H. Zimermann and V. N. Balashov, J. Phys. Chem., 106, pp. 712, 2002.

[4]. A. V. Sharygin, I. M. C. Xiao and R. H. Wood, J. Phys. Chem., 105, pp. 229, 2001.

[5]. C. Ho. Patience, D. A. Palmer and R. H. Wood, J. Phys. Chem., 104, pp. 12084, 2000.

[6]. N. H. El- Hammamy, M. M. El- Kholy, Ghada A. Ibhrahim and A. I. kawana, Advances in Applied Sc. Research, Vol. 1(3), pp.168, 2010.

[7]. S. Pattanaik and U. N. Dash, Chem. Sci. Trans, Research Article, 2013.

[8]. N. M. Singh, L. Jamir, Lalrosanga, R. R. J. C, Vol. 2(3), pp. 23, 2013.

[9]. Bockris JOM and Reddy AKN, Modern Electrochemistry, Plenum Press, New York, Vol. 1, 2nd Edition, pp. 251, 1998.

[10]. P. C. Rakshit, Fourth Edition, pp. 506, 1980.

[11]. A. Hazra and I. Basumallick, Trans. of the SAEST, Vol. 38(2), pp. 85, 2003.

[12]. J. F. Coetjee and C. D. Ritchie. Solute- solvent Interaction , Marcel- Dekker, New York, Vol. 2, 1976.

[13]. P. J. Victor, P. K. Muhuri, B. Das and D. K. Hazra , J. phys. Chem., 103B, pp. 11227, 1999.

[14]. U. N. Dash and N. N. Pasupalak, Indian J. of Chem., 36, pp. 88, 1997.