IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 5 - Issue 1, January 2016 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



In Vitro Evaluation Of Selected Plant Extracts As Biocontrol Agents Against Black Mold (Aspergillus Niger Van Tieghem) Of Onion Bulbs (Allium Cepa L.)

[Full Text]

 

AUTHOR(S)

Saifeldin A. F. El-Nagerabi, Awad H. M. Ahmed, Abdulkadir E. Elshafie

 

KEYWORDS

Allium cepa, Aspergillus niger, biocontrol, Commiphora myrrha, Panax ginseng, Prunus mahaleb, Syzygium aromaticum.

 

ABSTRACT

Black mold disease caused by Aspergillus niger V. Tiegh. is the most devastating infection occurs in onions (Allium cepa L.) under field and store conditions. The use of biocontrol agents is ecofriendly approach for controlling seedborne and soilborne diseases compared to the use of toxic synthetic fungicides. This study has been designed to assess the contamination levels of onion seeds with A. niger and its effect on seed germination, and to evaluate the in vitro antifungal activity of Prunus mahaleb seeds, Commiphora myrrha resin (0.5, 1.0, 1.5, 2.0 g/100 ml), Syzygium aromaticum dry buds (clove), and Panax ginseng roots extracts (0.5, 1.0, 2.0, 2.5 g/100 ml) against black mold of onion bulbs. The fungus is seedborne pathogen which significantly contaminated onion seeds (89-100%) and reduced seed germination (39-83%). The extracts of clove caused 43-96% inhibition in spore germination followed by mahaleb (37-96%), myrrha (33-88%), and ginseng (34-87%). The highest concentration of these extracts (3.0%) did not affect seed germination, but significantly reduced seed contamination by A. niger up to 84%, 80%, 71%, and 65% for Syzygium aromaticum, Syzygium aromaticum, Panax ginseng and Prunus mahaleb, respectively. The extracts apparently inhibited the fungal growth and mold development on stored onion bulbs which indicates the antifungal property of these extracts against A. niger. Therefore, they can be recommended as effective biocontrol agents to reduce seed contamination and enhance the storability of onion bulbs. Thus, the use of healthy and certified seeds for onion production is a priority.

 

REFERENCES

[1] El-Nagerabi, S.A.F. and Abdalla, R.M.O. (2004). Survey of seedborne fungi of Sudanese cultivars on onion, with new records. Phytoparasitica, 32(4): 413-416.

[2] Wani, A.H. and Un-Nisa, T. (2011). Management of black mold of onion. Mycopathologia, 9(1): 43-49.

[3] Özer, N. and Arin, L. (2014). Evaluation of antagonists to control black mold disease under field conditions and to induce the accumulation of antifungal compounds in onion following seed and set treatment. Crop Prot., 65: 21-28.

[4] Rathod , L.R., Jadhav, M.D., Mane, S.K., Muley, S.M. and Deshmukh, P.S. (2012). Seed borne mycoflora of legume seeds. Int. J. Adv. Biotechnol. Res., 3(1): 530-532.

[5] Saleem, A. and Ebrahim, M.K.H. (2014). Production of amylase by fungi isolated from legume seeds collected in Almadinah Almunawarah, Saudi Arabia. Journal of Taibah University for Science, 8(2): 90-97.

[6] Abdulwehab, S.A., El-Nagerabi, S.A.F. and Elshafie, A.E. (2015). Leguminicolous fungi associated with some seeds of Sudanese legumes. Biodiversitas, 16(2): 269-280.

[7] Musa, S.K., Habish, H.A., Abdalla, A.A. and Addlan, A.B. (1973). Problems of onion storage in the Sudan. Trop. Sci., 5: 319-327.

[8] El-Nagerabi, S.A.F. and Ahmed, A.H.M. (2003). Storability of onion bulbs contamination by Aspergillus niger mold. Phytoparasitica, 31(5): 515-523.

[9] Gupta, R., Khokhar, M.K. and Lal, R. (2012). Management of black mould disease of onion. J. Plant Pathol Microb., 3(5): 133.

[10] Hayden, N.J. and Maude, R.B. (1992). The role of seedborne Aspergillus niger in transmission of black mold of onion. Plant Pathol., 41: 573-581.

[11] Hayden, N.J., Maude, R.B., EI-Hassan, H.S. and Abdel-Magid, A.A. (1994). Studies on the biology of black mold (Aspergillus niger) on temperate and tropical onions. 2. The effect of treatments on the control of seedborne A. niger. Plant Pathol., 43: 570-578.

[12] Köycü, N.D. and Özer, N. (1997). Determination of seedborne fungi in onion and their transmission to onion sets. Phytoparasitica, 25: 25-31.

[13] Tyson, J.L. and Fullerton, R.A. (2004). Effect of soil-borne inoculum on the incidence of onion black mould (Aspergillus niger). New Zealand Plant Prot., 57: 138-141.

[14] Sibi, G., Wadhavan, R., Singh, S. Dhananjaya, K., Ravikumar, K.R. and Mallesha, H. (2013). Biological control of onion black mold by Indian culinary spices under in vitro conditions. Asian J. Pharm. Clinical Res., 6(2): 156-158.

[15] Hayden, N.J., Maude, R.B. and Proctor, F.J. (1994). Strategies for the control of black mould (Aspergillus niger) on stored tropical onions. Acta Hort., 358: 271-274.

[16] Irkin, R. and Korukluoglu, M. (2007). Control of Aspergillus niger with garlic, onion and leek extracts. Afr. J. Biotechnol., 6(4): 384-387.

[17] Suleiman, M.N., Emua, S. A. and Taiga, A. (2008). Effect of aqueous extracts on a spot fungus (Fusarium sp.) isolated from cowpea. Am.-Eurasian J. Sustain. Agric., 2: 261-263.

[18] Dawood, E.S. (2015). Efficacy of leaf extract of neem (Azadirachta indica) against shoot dieback disease of two species of Ficus in Atabara Town-Sudan. Int. J. Sci. Technol. Res., 4(9): 77-83.

[19] El-Nagerabi, S.A.F., Elshafie, A.E., AlKhanjari, S.S., Al-Bahry, S.N. and Elamin, M.R. (2013). Biological activities of Boswellia sacra extracts on the growth and aflatoxins secretion of two aflatoxigenic species of Aspergillus species. Food Cont,. 34: 763-769.

[20] Ludwiczuk, A., Wolski, T. and Holderna-Kedzia, E. (2006). Estimation of the chemical composition and antimicrobial and antioxidant activity of extracts received from leaves and roots of American ginseng (Panax quinquefolium L.). Herba Polonica, 52(40): 79-90.

[21] Fukuyama, N., Shibuya, M. and Orihara, Y. (2012). Antimicrobial polyacetylenes from Panax ginseng hairy root culture. Chem. Pharm. Bull., 60(3): 377-380.

[22] Aneja, K.R. and Joshi, R. (2010). Antimicrobial Activity of Syzygium aromaticum and its bud oil against dental cares causing microorganisms. Ethnobot. Leaflets, 14: 960-75.

[23] Pundir, R.K., Jain, P. and Sharma, C. (2010). Antimicrobial activity of ethanolic extracts of Syzygium aromaticum and Allium sativum against food associated bacteria and fungi. Ethnobotinical Leaflets, 14: 344-360.

[24] Machado, J.A., Rebelo, M.A., Favaro, L.I.L., Vila, M.M.D.C. and Gerenutti, M. (2012). In vitro evaluation of the antimicrobial potential associated of Schinus terebinthifolius Raddi and Syzygium aromaticum L. J. Phramacy, 2(3): 438-443.

[25] Cortés-Rajas, D.F., de Souza, C.R.F. and Oliveira, W.P. (2014). Clove (Syzygium aromaticum): a precious spice. Asian Pac. Trop. Biomed., 4(2): 90-96.

[26] Ayoola, G.A., Lawore, F.M., Adelowotan, T., Aibinu, I.E., Adenipekun, E., Coker, H.A.B. and Odugbemi, T.O. (2008). Chemical analysis and antimicrobial activity of the essential oil of Syzigium aromaticum (clove). Afr. J. Microbiol. Res., 2: 162-166.

[27] Pinto, E. and Vale-Sila, L. (2009). Antifungal activity of clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol., 58: 1454-1462.

[28] Rana, I.S., Rana, A.S. and Rajak, R.C. (2011). Evaluation of antifungal activity in essential oil of Syzygium aromaticum L. by extraction, purification and analysis of its main component eugenol. Braz. J. Microbiol., 42(4): 1269-1277.

[29] Hamini-Kadar, N., Hamdane, F., Boutoutaou, R., Kihal M. and Henni, J.E. (2014). Antifungal activity of clove (Syzygium aromaticum L.) essential oil against phytopathogenic fungi of tomato (Solanum lycopersicum L.) in Algeria. J. Exper. Biol. Agric. Sci., 2(5): 447-454.

[30] Seyyednejad, S.M., Maleki, S., Mirzaei Damab, M. and Motamedi, H. (2008). Antibacterial activity of Prunus mahaleb and Parsley (Petroselinum crispum) against some pathogens. Asian J. Biol. Sci., 1: 51-55.

[31] Özcelik, B., Koca, U., Kaya, D.A. and Sekeroglu, N. (2012). Evaluation of the in vitro bioactivities of mahalleb cherry (Prunus mahaleb L.). Romanian Biotechnol. Letters, 17(6): 7863-7872.

[32] Dolara, P., Corte, B., Ghelardini, C., Pugliese, A.M., Cerbai, E., Menichetti, S. and Lo Nostro, A. (2000). Local anaesthetic antibacterial and antifungal properties of sesquiterpenes from myrrh. Planta Med., 66(4): 356-358.

[33] Ali, B.Z. (2007). Evaluation of myrrh (Commiphora molmol) essential oil activity against some storage fungi. J. Al-Nahrain Univ., 10(2): 107-111.

[34] Omer, S.A., Adam, E.E.I. and Mohammed, O.B. (2011). Antifungal activity of Commiphora myrrha against some bacteria and Candida albicans isolated from Gazelles at King Khalid Wildlife Research Centre. Res. J. Med. Plant, 5(1): 65-71.

[35] Al-Abdalall, A.H.A. (2013). Antibacterial properties and phytochemical analysis of aqueous extract of oleo-gum resin of Commiphora myrrha and Commiphora molmol. Can. J. Pure Appl. Sci., 7(2): 2315-2323.

[36] Shuaib, M., Ali, A., Panda, B.P. and Ahmad, M.I. (2013). Antibacterial activity of resin rich plant extracts. J. Pharm. Bioallied Sci. 5(7): 265-269.

[37] Abd-Ulgadir, K.S., Tahir, A.S., Ahmed, H., Rakaz, M.A., Abosalif, K.O., Abdelsalam, K.A. and Satti, A.B. (2015). An in vitro antimicrobial potential of various extracts of Commiphora myrrha. J. Biomed. Pharm. Res., 4(2): 15-19.

[38] Al-Sabri, A.E., Moslem, M.A. and Hadi, S. (2015). Antifungal activity of Commiphora myrrha L. against some air fungi. J. Pure and Appl. Microbiol., 8(5): 3951-3955.

[39] ISTA 1966. International rules for seed testing. Seed Science and Technology 4: 3-49.

[40] Raper, K. B., & Fennell, D. I. (1965). The genus Aspergillus (pp. 686). Baltimore, The Williams and Wilkins Company, pp. 686.

[41] Gupta, R., Khokhar, M.K. and Lal, R. (2014). Estimation of deteriorative effect of Aspergillus niger on seed germination and seedling vigour. Int. J. Plant Sci., 9(2): 333-336.

[42] Garuba, T., Abdulrahman, A.A., Olhang, G.S., Abdulkareem, K.A. and Amadi, J.E. (2014). Ettects of fungal filtrates on seed germination and leaf anatomy of maize seedlings (Zea mays L. Poaceae). J. Appl. Sci. Environ. Manage, 18(4): 662-667.

[43] Narayana, K.J.P., Srikanth, Vijayalakshmi, M. and Lakshmi, N. (2007). Toxic spectrum of Aspergillus niger causing black rot of onion. Res. J. Micorbiol., 2: 881-884.

[44] Mohapatra, K.B. (2011). Effect of Aspergillus niger and its culture filtrate on seed germination and seedling vigour of groundnut. J. Plant Prot. Environ., 8(2): 61-64.

[45] Arokiyaraj, S., Martin, S., Perinbam, K., Marie Arockianathan, P. and Beatrice, V. (2008). Free radical scavenging activity and HPTLC finger print of Pterocarpus santalinus L.: an in vitro study. Indian Journal of Science and Technology, 1(7): 1-7.

[46] Gangadevi, V., Yogeswari, S., Kamalraj, S., Rani, G. and Muthumary, J. (2008). The antibacterial activity of Acalypha indica L. Indian Journal of Science and Technology, 1(6): 1-5.

[47] Brindha, V., Saravanan, A. and Manimekalai, R. (2009). Drug designing for ring finger protein 110 involved in adenocarcinoma (human breast cancer) using casuarinin extracted from Terminalia arjuna. Indian Journal of Science and Technology, 2(2): 22-26.

[48] Avasthi, S., Guatam, A.K. and Bhadauria, R. (2010). Antifungal activity of plant products against Aspergillus niger: A potential application in control of a spoilage fungus. Biological Form, 2(1): 53-55.

[49] Gurjar, M.S., Ali, S., Akhtar, M. and Singh, K.S. (2012). Efficacy of plant extract in disease management. Agric. Sci., 3(3): 425-433.

[50] Raji, R. and Raveendran, K. (2013). Antifungal activity of selected plant extracts against phytopathogenic fungi Aspergillus niger. Asian J. Plant Sci. Res., 3(1): 13-15.

[51] Arowora, K.A. and Adetunji, C.O. (2014). Antifungal effects of crude extracts of Moringa oleifera on Aspergillus niger V. Tieghem associated with post-harvest rot of onion bulb. SMU Med. J., 1(2): 214-223.

[52] Gadir, S.A. and Ahmed, I.M. (2014). Commiphora myrrha and Commiphora africana essential oils. J. Chem. Pharm. Res., 6(7): 151-156.

[53] Shams, K. and Schmidt, R. (2007). Lipid fraction constituents and evaluation of anti-anaphylactic activity of Pruus mahaleb L. kernels. Afr. J. Tradit. Commplement Altern. Med., 4(3): 289-293.