IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
Scopus/Elsevier
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 7 - Issue 2, February 2018 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Influence Of Accelerations On The Drag Coefficient: A Golf Ball Case

[Full Text]

 

AUTHOR(S)

Serge Henri KONDA, Raymond Gentil ELENGA

 

KEYWORDS

Golf ball, aerodynamic coefficients, unsteady flow, history force, Basset force.

 

ABSTRACT

The expression of the force acting on a sphere in unsteady motion is known nowadays, for Reynolds numbers ranging from 0.1 to 300. For large Reynolds numbers it is assumed that this force is equivalent to stationary drag. This work is about to the experimental determination of the usually neglected forces. This study is performed on golf balls, in the range of Reynolds between 50000 and 250000. For this, accelerated and decelerated flows are made in a wind tunnel with a variable force measuring device. The experimental results confirm the hypotheses that the inertia forces due to the displacement of the mass of the fluid and the forces due to the history of the movement are negligible in supercritical regime; which is not the case in critical regime. Furthermore non-dimensional parameters of this force have been determined.

 

REFERENCES

[1] H. Iversen and R. Balent, ‘’A correlating modulus for fluid resistance in accelerated motion’’, J. Appl. Phys, vol. 22 , pp. 324, 1951.

[2] Luneau, ‘’Résistance d’un corps en mouvement varié, publication sciences et techniques du Ministère de l’air ‘’, vol. 4, pp 69 - 363, 1960

[3] F. Odar and W. Hamilliton, ‘’ Forces on a sphere accelerating in a viscous fluid’’, journal of fluid Mechanics, vol. 18, no. 2, pp. 302 – 314, 1964.

[4] J. Batalle, M. Lance and J.L. Marie,’’ Bubbly turbulent shear flow’’, FED,vol. 99, pp. 1 – 7, 1990.

[5] Ö. Oçomakli, A. Bolukbaçi, F. Afshari & H. Athari, ‘’Sphere accelerating in a viscous fluid and finding the added mass and drag coefficients in steady and unsteady flow’’, Conference: usual isi bilimi teknigi kongresi, at Turky, conference paper, August 2013.

[6] M. Rivero, J. Magnaudet et J. Fabre, ‘’Quelques résultats nouveaux concernant les forces exercées sur une inclusion sphérique par un écoulement accéléré’’, journal of fluid Mechanics, série II, pp 1409 – 1506, 1991.

[7] T.R. Auton, J.R.C. Hunt and M. Prud’homme, ‘’ The force exerted on a body in inviscid unsteady non uniform rotational flow’’, J. Fluid Mech ,vol. 197, pp. 241 – 257, 1998.

[8] L. Wakaba and S. Balachandar, ‘’On the added mass force at finite Reynolds and acceleration number’’, Théoritical and Computational Fluid dynamics, vol. 21, pp. 147 – 153, 2007.

[9] E. Loth and R.J. Dorgan ,’’ An equation of motion for particles of finite Reynolds number and size’’, Environmental Fluid Mechanics, vol. 9, no. 2, pp. 187 – 206, 2009.

[10] Tsuji, Y. Kato and Tanaka, ‘’Experiments on the unsteady drag and wake of a sphere at high Reynolds numbers’’, J. Multiphase Flow, vol. 17, no. 3, pp. 343 – 354, 1990.

[11] R. Mei, C.J. Lawrence and R.J. Adrian, ‘’Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity’’, J fluid, vol. 233, pp. 613 – 631, 1991.

[12] R. Mei and R.J. Adrian, ‘’Flow past a sphere with an oscillation in free-stream and unsteady drag at finite Reynolds numbers’’, J. Fluid, vol. 237, pp. 323 – 341, 1992.

[13] D.J. Vojr and E.E. Michaelides, ‘’Effect of the history term on the motion of rigid spheres in a viscous fluid’’, International journal of multiphases flow, vol. 20, no. 3, pp. 547 – 556, 1994.

[14] E.E. Michaelides, ‘’The transient equation of motion for particles bubbles and droplets’’, J. of Fluid Engineering, vol. 109, pp. 233 – 247, 1997.

[15] P.J. Thomas, ‘’On the influence of the Basset history force on the motion of a particle through a fluid’’, Phys. Fluid, vol. 9, no. A4, pp. 2090 – 2093, (1992).

[16] M. Rostami, A. Ardeshir,G. Ahmadi and P.J. Thomas, ‘’On the effect of gravitational and hydrodynamic forces on particle motion in a quiescent fluid at high particle Reynolds numbers’’, Can J. Phys, vol. 86, pp. 791 – 799, 2008.

[17] Karafilian and Kotas, ‘’Drag on sphere in unsteady motion in a liquid at rest’’, journal of fluid Mechanics, vol. 87, no. 1, pp. 85 – 96, 1978.

[18] Temkim & Kim, ‘’Droplet motion induced by weak shock waves’’, journal of fluid Mechanics, vol. 96, pp. 133 – 157, 1980.

[19] Temkin and Mehta, ‘’Droplet drag in accelerating and decelerating flow’’, journal of fluid Mechanics, vol. 116, pp. 297 – 313, 1982.

[20] H. Vauxel, “Thèse: Balistique de la balle de golf”, Université Paris 6 – France, 1991.

[21] S. H. Konda, ¨Thèse: Reconstitution et optimisation des trajectoires des balles de golf à partir de mesure en soufflerie¨, Université Paris 6 – France, 1994.

[22] M. ABBAD, ‘’ Thèse : Contribution sur les forces d’histoire exercées sur des inclusions solides ou fluides à faibles nombre de Reynolds’’, Institut Polytechnique de Loraine –France, 2004.