IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 8 - Issue 3, March 2019 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Bioethanol Production From Cassava Peel By Ultrasonic Assisted Using HCl as Catalyst

[Full Text]

 

AUTHOR(S)

Sirajuddin, Bandi Soepratono, Edy Budiarso, Wiwin Suwinarti

 

KEYWORDS

bioethanol, cassava peel, catalyst, fermentation, glucose, hydrolysis ultrosonic

 

ABSTRACT

Cassava peel is lignocellulose material that has the potential to be processed into alternative fuels is bioethanol. This study aims to determine the concentration of HCl as catalyst, hydrolysis time optimum use of ultrasonic waves to the yield of glucose and determine the optimum fermentation time to convert glucose into ethanol. Hydrolysis process 25 grams of sample was added 150 ml of HCl as catalyst with concentration variations HCl 0.75 N, 1.00 N and 1.25 N, hydrolysis time variation 6, 15, 30, 60 and 90 minutes using an ultrasonic wave frequency at 35 KHz and a temperature of 30⁰C. The resulting hydrolyzate was analyzed using methods luff schrool. The highest yield of fermentable glucose 150 ml using 5 g of yeast and 2 grams of NPK with time variations of 2, 4, 7, 10, 12 days. Destilled.dan fermented then analyzed using Cromatography Gas (GC). The highest glucose yield hydrolysis process is a catalyst concentration of 1.2 N HCl and 30 minutes of 34.59%. While the highest bioethanol yield in the fermentation process is 4 days at 20.77%.

 

REFERENCES

[1]. Q. Kang, L. Appels, J. Baeyens, R. Dewil, and T. Tan, “Energyefficient production of cassava-based bio-ethanol,” Advances in Bioscience and Biotechnology, vol. 5, no. 12, pp. 925–939, 2014.

[2]. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006). Ethanol can contribute to energy and environmental goals. Sci. 311(5766):506-508.

[3]. Agriculture Departement 2013. Harvest area, produktiviy-production cassava plnt.

[4]. Grace, M. R. 1977. Cassava Processing: Food and Agriculture Organization.

[5]. Odunfa SA Olabiwoninu AA (2012) Enhancing the production of reducing sugars from cassava peels by pretreatment methods. International J. Sci. Technol. 2(9):650-657.

[6]. Saxena RCÃ, Adhikari DK, Goyal HB. Biomass-based energy fuel through biochemical routes: a review. Renew Sust Energy Rev 2009;13:167–78.

[7]. Lu Y, Mosier NS. Current technologies for fuel ethanol production from lignocellulosic plant biomass. In: Vermerris W, editor. Genetic improvement of bioenergy crops. New York: Springer; 2008. p. 161–82

[8]. L. Shen, J. Lei, and Y. Bi, “Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 417421, 10 pages, 2011.

[9]. Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energ Conver Manage 2011;52:858−875.

[10]. Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol 2010;101:4851−4861.

[11]. Weil J, Westgate P, Kohlman K, Ladish MR. Cellulose pretreatment of lignocellulosic substrate. Enzyme Microb Technol 1994;16:1002–4.

[12]. Martinez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camare- ro S, Guillen F, et al. Bio-degradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int J Microbiol 2005;8:195–204.

[13]. Chisti Y. Sonobioreactors: using ultrasound for enhanced microbial productivity. Trends Biotechnol 2003;21: 89-93.

[14]. Gogate PR, Pandit AB. Application of cavitational reactors for cell disruption for recovery of intracellular enzymes. J Chem Technol Biotechnol 2008;83:1083−1093.
[15]. Rokhina EV, Lens P, Virkutyte J. Low-frequency ultrasound in biotechnology: state of the art .Trends Biotechnol 2009;27:298−306.

[16]. Gole VL, Gogate PR. A review on intensification of synthesis of biodiesel from sustainable feed stock using sonochemical reactors. Chem Eng Proces 2012;53:1−9.

[17]. Shirsath SR, Sonawane SH, Gogate PR. Intensification of extraction of natural products using ultrasonic irradiations- A review of current status. Chem Eng Process 2012;10−23.

[18]. Kardos N, Luche JL. Sonochemistry of carbohydrate compounds. Carbohyd Res 2001;332:115−131.

[19]. Lida, Y., Tuziuti T., Yasui K., Towata A., and Kozuka T.2002. Control of Viscosity in Starch and Polysaccharide Solution with Ultrasound After Gelatinization. Journal of National Institute of Advanced Industrial Science and Technology (AIST).Nagoya, Japan.

[20]. Adesanya O, Oluyemi K, Josiah S, Adesanya R, Shittu L, Ofusori D, Bankole M, Babalola G (2008). Ethanol production by Saccharomyces cerevisiae from cassava peels hydrosylate. Internet J. Microbiol. 5(1):25-35.

[21]. Sulfahri SM, Eko S, Irvansyah MY, Remia SU, Sarwoko M (2011). Ethanol production from algae Spirogyra with fermentation by Zymomonas mobilis and Saccharomyces cerevisiae. J. Basic Appl. Sci. Res. 1(7):589-593.