International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 10 - Issue 2, February 2021 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Antifungal Evaluation Of Edible Coating Agent Against Fusarium Oxysporum On Tomato

[Full Text]



Zahir Shah Safari, Phebe Ding, Ashuqullah Atif, Mohammad Wali Salari, Siti Fairuz Yusoff



Antifungal activity; edible coating; Fusarium oxysporum; Gum Arabic; vanillin; chitosan; tomato



Fusarium fruit rot is caused by Fusarium oxysporum is one of the damaging postharvest losses in tomato production. Synthetic pesticides are widely and repetitively used to control this disease, unfortunately, it lead to detrimental effects on human health, environment and increase fungal resistance. This study aimed to identify Fusarium oxysporum by both morphological and molecular characterization that caused tomato fruit rot, as well as to study the effects of edible coating agents in vitro towards Fusarium oxysporum mycelium growth. In this study, pathogenicity test showed Fusarium oxysporum is most sever fungi with disease severity 72%, as well as among coating agents 5% CaCl2 was able to inhibited mycelium growth of Fusarium oxysporum up to 53.5% and 15 mM vanillin up to 76.68%. This study proved that 15 mM vanillin has a potent natural antifungal agent against Fusarium oxysporum mycelium growth.



[1] Herrera-Téllez, V. I., Cruz-Olmedo, A. K., Plasencia, J., Gavilanes-Ruíz, M., Arce-Cervantes, O., Hernández-León, S., Saucedo-García, M. 2019. The protective effect of Trichoderma asperellum on tomato plants against Fusarium oxysporum and Botrytis cinerea diseases involves inhibition of reactive oxygen species production. Int. J. molecular sci. 20(8), 20-27. https://doi.org/10.3390/ijms20082007
[2] Rashid, T. S., Sijam, K., Awla, H. K., Saud, H. M., Kadir, J. 2016. Pathogenicity assay and molecular identification of fungi and bacteria associated with diseases of tomato in Malaysia. American J. Plant Sci. 7(6), 949-957. DOI: 10.4236/ajps.2016.76090
[3] Chehri, K. 2015. First report of postharvest fruit rots of tomato caused by Fusarium oxysporum in Iran. Arch. Phytop. Plant. Protect. 48(6), 537-544. https://doi.org/10.1080/03235408.2015.1045235
[4] Ekanayake, G., Abeywickrama, K., Daranagama, A., Kannangara, S. 2019. Morphological characterization and molecular identification of stem-end rot associated fungal species isolated from ‘Karutha Colomban’mango fruits in Sri Lanka. J. Agr. Sc. Sri Lanka, 14(2), 120-128. http://doi.org/10.4038/jas.v14i2.8514
[5] Bakar, A. A., Izzati, M. N. A., MI KALSoM, Y. 2013. Diversity of Fusarium species associated with postharvest fruit rot disease of tomato. Sains Malaysiana, 42(7), 911-920.
[6] Amini, J., Sidovich, D. 2010. The effects of fungicides on Fusarium oxysporum f. sp. lycopersici associated with Fusarium wilt of tomato. J. Plant Protect. Res. 50, (2), 201-213. DOI: 10.2478/v10045-010-0029-x
[7] Tayel, A. A., Moussa, S. H., Salem, M. F., Mazrou, K. E., El‐Tras, W. F. 2016. Control of citrus molds using bioactive coatings incorporated with fungal chitosan/plant extracts composite. J. Sci. Food. Agr. 96(4), 1306-1312. https://doi.org/10.1002/jsfa.7223
[8] Nor, S. M., Ding, P. 2020. Trends and advances in edible biopolymer coating for tropical fruit: A review. Food Res. Int. 109208. https://doi.org/10.1016/j.foodres.2020.109208.
[9] Safari, Z.S.; Ding, P.; Juju Nakasha, J.; Yusoff, S.F. Combining Chitosan and Vanillin to Retain Postharvest Quality of Tomato Fruit during Ambient Temperature Storage. Coatings 2020, 10, 1222. https://doi.org/10.3390/coatings10121222
[10] Tzortzakis, N., Xylia, P., Chrysargyris, A. 2019. Sage essential oil improves the effectiveness of Aloe vera gel on postharvest quality of tomato fruit. Agronomy. 9(10), 635-643. https://doi.org/10.3390/agronomy9100635.
[11] Sohail, M., Ayub, M., Khalil, S. A., Zeb, A., Ullah, F., Afridi, S. R., Ullah, R. 2015. Effect of calcium chloride treatment on post harvest quality of peach fruit during cold storage. Int. Food Res. J. 22(6), 2225-2234.
[12] Kannaujia, P. K., Asrey, R., Singh, A. K., Varghese, E., 2019. Effect of gum arabic and fruwash coatings on postharvest quality of summer squash (Cucurbita pepo). Ind. J. Agr. Sci. 89(10), 1604-1608.
[13] Takma, D. K., Korel, F. 2017. Impact of preharvest and postharvest alginate treatments enriched with vanillin on postharvest decay, biochemical properties, quality and sensory attributes of table grapes. Food. chem. 221, 187-195.http://dx.doi.org/10.1016/j.foodchem.2016.09.195.
[14] Liu, Y., Wisniewski, M., Kennedy, J. F., Jiang, Y., Tang, J., Liu, J. 2016. Chitosan and oligochitosan enhance ginger (Zingiber officinale Roscoe) resistance to rhizome rot caused by Fusarium oxysporum in storage. Carboh. Polymers. 151, 474-479. http://dx.doi.org/10.1016/j.carbpol.2016.05.103.
[15] Wang, S. Y., & Gao, H. (2013). Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT-Food Science and Technology, 52(2), 71-79. https://doi.org/10.1016/j.lwt.2012.05.003
[16] Tayel, A. A., Moussa, S., Opwis, K., Knittel, D., Schollmeyer, E., Nickisch-Hartfiel, A. 2010. Inhibition of microbial pathogens by fungal chitosan. Int .J. Biol. Macromol. 47(1), 10-14. http://dx.doi.org/10.1016/j.ijbiomac.2010.04.005.
[17] Šimůnek, J., Tishchenko, G., Hodrová, B., Bartoňová, H. 2006. Effect of chitosan on the growth of human colonic bacteria. Folia Microb. 51(4), 306-308.
[18] Negi, B. S., Dave, B. P. 2010. In vitro antimicrobial activity of Acacia catechu and its phytochemical analysis. Ind. J. microbiol. 50(4), 369-374. https://doi.org/10.1007/s12088-011-0061-1
[19] Rattanapitigorn, P., Arakawa, M., Tsuro, M. 2006. Vanillin enhances the antifungal effect of plant essential oils against Botrytis cinerea. Int. J. Aromath. 16(3-4), 193-198. https://doi.org/10.1016/j.ijat.2006.09.003
[20] Sitara, U., Hassan, N., Naseem, J. 2011. Antifungal activity of Aloe vera gel against plant pathogenic fungi. Pakistan J. Bot. 43(4), 2231-2233.
[21] Biggs, A. R. 1999. Effects of calcium salts on apple bitter rot caused by two Colletotrichum spp. Plant Disease, 83(11), 1001-1005. https://doi.org/10.1094/PDIS.1999.83.11.1001
[22] Ali, A., Maqbool, M., Ramachandran, S., Alderson, P. G. 2010. Gum Arabic as a novel edible coating for enhancing shelf life and improving postharvest quality of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 58(1), 42-47. http://dx.doi.org/10.1016/j.postharvbio.2010.05.005.
[23] Alamri, S. A., Hashem, M., Alqahtani, M. S., Alshehri, A. M., Mohamed, Z. A., Ziedan, E. S. H. 2019. Formulation of mint and thyme essential oils with Arabic gum and Tween to enhance their efficiency in the control of postharvest rots of peach fruit. Canadian J. Plant Pathol. 1-14.https://doi.org/10.1080/07060661.2019.1686654.
[24] Yu, T., Yu, C., Lu, H., Zunun, M., Chen, F., Zhou, T., Zheng, X. 2012. Effect of Cryptococcus laurentii and calcium chloride on control of Penicillium expansum and Botrytis cinerea infections in pear fruit. Biological Control, 61(2), 169-175. http://dx.doi.org/10.1016/j.biocontrol.2012.01.012.
[25] Yasser, M. M., Marym M. M, Taghrid A. K., Azza M.A. N. 2019. Effect of hot water treatment on postharvest fruit rots and quality of tomato fruits. Plant. Archives. 19(2) 2325-2334.
[26] Shi, J. F., Sun, C. Q. 2017. Isolation, identification, and biocontrol of antagonistic bacterium against Botrytis cinerea after tomato harvest. Brazilian J. Microb. 48(4), 706-714. http://dx.doi.org/10.1016/j.bjm.2017.03.002.
[27] Fredericks, D. N., Relman, D. A. 1996. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clinical microbiology Review. 9(1), 18-33. DOI: 10.1128/CMR.9.1.18
[28] S. Mohamed, N. T., Ding, P., Kadir, J., M. Ghazali, H. 2017. Potential of UVC germicidal irradiation in suppressing crown rot disease, retaining postharvest quality and antioxidant capacity of Musa AAA “Berangan” during fruit ripening. Food Sci. Nutr. 5(5), 967-980. https://doi.org/10.1002/fsn3.482
[29] Palou, L. 2018. Postharvest treatments with GRAS salts to control fresh fruit decay. MDPI. Horticulturae. 4(4), 46-54. https://doi.org/10.3390/horticulturae4040046
[30] Sofuni, T., Honma, M., Hayashi, M., Shimada, H., Tanaka, N., Wakuri, S., Nakadate, M. 1996. Detection of in vitro clastogens and spindle poisons by the mouse lymphoma assay using the micro well method: Interim report of an international collaborative study. Mutagenesis, 11(4), 349-355. https://doi.org/10.1093/mutage/11.4.349
[31] Akbar, A., Hussain, S., Ullah, K., Fahim, M., Ali, G. S. 2018. Detection, virulence and genetic diversity of Fusarium species infecting tomato in Northern Pakistan. PloS one, 13(9), 3613-3621. https://doi.org/10.1371/journal.pone.0203613
[32] Chehri, K. 2016. Molecular identification of pathogenic Fusarium species, the causal agents of tomato wilt in western Iran. J. Plant Protect. Res. 56(2). 187-194. DOI: 10.1515/jppr-2016-0024
[33] Ignjatov, M., Milošević, D., Nikolić, Z., Gvozdanović-Varga, J., Jovičić, D., Zdjelar, G. 2012. Fusarium oxysporum as causal agent of tomato wilt and fruit rot. Pest. medic. 27(1), 25-31. doi: 10.2298/PIF1201025I
[34] Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
[35] Kumar, S., Stecher, G., Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biol. Evol. 33(7), 1870-1874. DOI: 10.1093/molbev/msw054
[36] Medina-Romero, Y. M., Roque-Flores, G., Macías-Rubalcava, M. L. 2017. Volatile organic compounds from endophytic fungi as innovative postharvest control of Fusarium oxysporum in cherry tomato fruits. Appl. Microb. Biotechnol. 101(22), 8209-8222. https://doi.org/10.1007/s00253-017-8542-8
[37] Matica, A., Menghiu, G., Ostafe, V. 2017. Antifungal properties of chitosans. New Front. Chem. 26(1), 55-63.
[38] Mendy, T. K., Misran, A., Mahmud, T. M. M., Ismail, S. I. 2019. Application of Aloe vera coating delays ripening and extend the shelf life of papaya fruit. Sci. Hort. 246, 769-776. https://doi.org/10.1016/j.scienta.2018.11.054.
[39] Weeraratne, W. A. P. G., De Costa, D. M. 2018. Molecular identification of Fusarium spp. from wilt-infected tomato and brinjal plants in selected regions of Sri Lanka and endophytic bacteria as a potential option for disease management. Trop. Agr. Res. 30 (1): 32 – 43 http://doi.org/10.4038/tar.v30i1.8276
[40] Gordon, T. R., Okamoto, D., Jacobson, D. J. 1989. Colonization of muskmelon and nonsusceptible crops by Fusarium oxysporum f. sp. melonis and other species of Fusarium. Phytopathology. 79(10), 1095-1100.
[41] Ohara, T., Inoue, I., Namiki, F., Kunoh, H., Tsuge, T. 2004. REN1 is required for development of microconidia and macroconidia, but not of chlamydospores, in the plant pathogenic fungus Fusarium oxysporum. Genetics. 166(1), 113-124. https://doi.org/10.1534/genetics.166.1.113
[42] Teixera, L., Coelho, L., Tebaldi, N. D. 2017. Characterization of Fusarium oxysporum isolation fruit genotypes to fusariosis. Revista Brasileira de Frut. 39(3), 1387-1392. https://doi.org/10.1590/0100-29452017415.
[43] Leslie, J. F., Summerell, B. A. 2008. The Fusarium laboratory manual. John Wiley & Sons. First edit. Victoria 3053, Australia, Blackwell Publishing.
[44] Troncoso-Rojas, R., Sánchez-Estrada, A., Carvallo, T., González-León, A., Ojeda-Contreras, J., Aguilar-Valenzuela, A., Tiznado-Hernández, M. E. 2013. A fungal elicitor enhances the resistance of tomato fruit to Fusarium oxysporum infection by activating the phenylpropanoid metabolic pathway. Phytoparasitica. 41(2), 133-142. https://doi.org/10.1007/s12600-012-0271-z
[45] Ruelas-Chacon, X., Contreras-Esquivel, J. C., Montañez, J., Aguilera-Carbo, A. F., Reyes-Vega, M. L., Peralta-Rodriguez, R. D., Sanchéz-Brambila, G. 2017. Guar gum as an edible coating for enhancing shelf life and improving postharvest quality of roma tomato (Solanum lycopersicum L.). J. Food Qual. 20-29. https://doi.org/10.1155/2017/8608304
[46] Zhu, Y., Li, D., Belwal, T., Li, L., Chen, H., Xu, T., Luo, Z. 2019. Effect of nano-SiOx/Chitosan complex coating on the physicochemical characteristics and preservation performance of green tomato. Molecules, 24(24), 4552-4563. https://doi.org/10.3390/molecules24244552
[47] Sohail, M., Ayub, M., Khalil, S. A., Zeb, A., Ullah, F., Afridi, S. R., Ullah, R. 2015. Effect of calcium chloride treatment on postharvest quality of peach fruit during cold storage. Int. Food Res. J. 22(6), 2225–2229.
[48] Minh, N. P., Nhi, T. T. Y., Vien, L. T. B., Ha, T. T. T., Yen, N. T. K. 2019. Effect of Arabic Gum Coating on postharvest quality of litchi (Litchi chinensis) fruits. J. Pharma. Sci. Res.11(4), 1464-1468.
[49] Romero-Cortes, T., Pérez España, V. H., López Pérez, P. A., Rodríguez-Jimenes, G. D. C., Robles-Olvera, V. J., Aparicio Burgos, J. E., Cuervo-Parra, J. A. 2019. Antifungal activity of vanilla juice and vanillin against Alternaria alternata. CyTA-J. Food, 17(1), 375-383. https://doi.org/10.1080/19476337.2019.1586776.
[50] Munhuweyi, K., Caleb, O. J., Lennox, C. L., van Reenen, A. J., Opara, U. L. 2017. In vitro and in vivo antifungal activity of chitosan-essential oils against pomegranate fruit pathogens. Postharvest Biol. Technol. 129, 9-22. http://dx.doi.org/10.1016/j.postharvbio.2017.03.002.
[51] Li, Y. C., Sun, X. J., Yang, B. I., Ge, Y. H., Yi, W. A. N. G. 2009. Antifungal activity of chitosan on Fusarium sulphureum in relation to dry rot of potato tuber. Agr. Sci. China. 8(5), 597-604. https://doi.org/10.1016/S1671-2927(08)60251-5
[52] Leslie, J. F., Summerell, B. A. 2008. The Fusarium laboratory manual. John Wiley & Sons. First edit. Victoria 3053, Australia, Blackwell Publishing.
[53] Abdellaoui, S., El Aissami, A., Benkhemmar, O., Touhami, A., Benkirane, R., Douira, A. 2017. Study of the differentiation of Fusarium oxysporum f. sp. albedinis chlamydospores on different culture media. Annual Research and review in Biology18(4).1-9. DOI: 10.9734/ARRB/2017/35653
[54] Jeihanipour, A., Karimi, K., Taherzadeh, M. J. 2007. Antimicrobial properties of fungal chitosan. Res.J. biological sci. 2(3), 239-243.
[55] Abakar, H. O. M. Shami. E. B. Ragaa. S. M. A., 2017. Antimicrobial activity and minimum inhibitory concentration of Aloe vera sap and leaves using different extracts. J. Pharmacognosy. Phytochemistry. 6(3): 298-303.
[56] Khaliq, G., Mohamed, M. T. M., Ghazali, H. M., Ding, P., Ali, A. 2016. Influence of gum arabic coating enriched with calcium chloride on physiological, biochemical and quality responses of mango (Mangifera indica L.) fruit stored under low temperature stress. Postharvest Biol. Technol.111, 362-369. https://doi.org/10.1016/j.postharvbio.2015.09.029
[57] Yu, T., Yu, C., Chen, F., Sheng, K., Zhou, T., Zunun, M., Zheng, X. 2012. Integrated control of blue mold in pear fruit by combined application of chitosan, a biocontrol yeast and calcium chloride. Postharvest Biol. Technol. 69, 49-53. http://dx.doi.org/10.1016/j.postharvbio.2012.02.007.
[58] Paladugu, K., Gunasekaran, K. 2017. Development of gum Arabic edible coating formulation through nanotechnological approaches and their effect on physico-chemical change in tomato (Solanum lycopersicum L) fruit during storage. Int. J. Agr. Sci. 8, 3866-3870
[59] Bnuyan, I. A., Hindi, N. K. K., Jebur, M. H., Mahdi, M. A. 2015. In vitro antimicrobial activity of gum Arabic (Al Manna and Tayebat) prebiotics against infectious pathogens. Ijppr. Human, 3(3), 77-85.
[60] Rupasinghe, H. V., Boulter-Bitzer, J., Ahn, T., Odumeru, J. A. 2006. Vanillin inhibits pathogenic and spoilage microorganisms in vitro and aerobic microbial growth in fresh-cut apples. Food Res. Int. 39(5), 575-580. https://doi.org/10.1016/j.foodres.2005.11.005
[61] Rakchoy, S., Suppakul, P., Jinkarn, T. 2009. Antimicrobial effects of vanillin coated solution for coating paperboard intended for packaging bakery products. Asian J. Food. Agro-Indus. 2(4), 138-147.