International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 10 - Issue 5, May 2021 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Machine Learning In Agriculture: A Review

[Full Text]



Azeem Ayaz Mirani, Muhammad Suleman Memon, Rozina Chohan, Asif Ali Wagan, Mumtaz Qabulio



Machine learning, IIoT, Agri 4.0, Precision, Crop yield prediction.



Agriculture 4.0 (A4.0) major area of study to focus on for efficient agricultural production. Agriculture crop product has emerged with several new computational methods. However, few important factors were not possible to maintain and monitor promptly as today is possible. Computational intelligence and machine learning techniques evolved to analyze, quantify, monitor, and predict agricultural crops. The robustness in machine learning methods and computational techniques provided easy, accurate, up to date future predictions. Machine learning is one of the dominant fields in theses that are used for computational analysis of the obtained data. The historical data can be analyzed and processed for future prediction. In agricultural science crop yield prediction is a major area of study to make aware of future repercussions relating to the agricultural crop. This study highlights the Evaluation, applications, and challenges of machine learning for crop yield prediction.



[1] Aceto, G., Persico, V., &Pescapé, A. (2020). Industry 4.0 and Health: Internet of Things, Big Data, and Cloud Computing for Healthcare 4.0. Journal of Industrial Information Integration, 18(February), 100129.https://doi.org/10.1016/j.jii.2020.100129
[2] Balakrishnan, N., &Muthukumarasamy, G. (2016). Crop Production - EnsembleMachine Learning Model for Prediction. 5(7), 4285.
[3] Chouhan, S. S., Singh, U. P., & Jain, S. (2020). Applications of Computer Visionin PlantPathology: A Survey. Archives of Computational Methods in Engineering, 27(2), 611–632. https://doi.org/10.1007/s11831-019-09324-0
[4] Cui, L., Yang, S., Chen, F., Ming, Z., Lu, N., & Qin, J. (2018). A survey on application of machine learning for Internet of Things. International Journal of Machine Learning and Cybernetics, 9(8), 1399–1417. https://doi.org/10.1007/s13042-018-0834-5
[5] Dortmund, T. U., &Stolpe, M. (n.d.). The Internet of Things : Opportunities and Challenges for Distributed Data Analysis. 18(1), 15–34.
[6] Espejo-Garcia, B., agriculture, J. M.-G.-… electronics in, &2018, undefined. (n.d.). Machine learning for automatic rule classification of agricultural regulations: A case study in Spain. Elsevier. Retrieved February 28, 2019, from https://www.sciencedirect.com/science/article/pii/S0168169918303260
[7] Goap, A., Sharma, D., Shukla, A. K., & Krishna, C. R. (2018). An IoT based smart irrigation management system using Machine learning and open source technologies. Computers and Electronics in Agriculture, 155(May), 41–49. https://doi.org/10.1016/j.compag.2018.09.040
[8] Khaki, S., Wang, L., &Archontoulis, S. V. (2020). A CNN-RNN Framework for Crop Yield Prediction. Frontiers in Plant Science, 10(January), 1–14. https://doi.org/10.3389/fpls.2019.01750
[9] Li, Y., Guan, K., Yu, A., Peng, B., Zhao, L., Li, B., & Peng, J. (2019). Field Crops Research Toward building a transparent statistical model for improving crop yield prediction : Modeling rainfed corn in the U . S. 234(February), 55–65. https://doi.org/10.1016/j.fcr.2019.02.005
[10] Liakos, K. G., Busato, P., Moshou, D., & Pearson, S. (n.d.). Machine Learning in Agriculture : A Review. Ml, 1–29. https://doi.org/10.3390/s18082674
[11] ML remote classification.pdf. (n.d.).
[12] Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á., Heredia, I., Malík, P., &Hluchý, L. (2019). Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: a survey. Artificial Intelligence Review, 52(1), 77–124. https://doi.org/10.1007/s10462-018-09679-z
[13] Oguntunde, P. G., Lischeid, G., & Dietrich, O. (2018). Relationship between rice yield and climate variables in southwest Nigeria using multiple linear regression and support vector machine analysis. 459–469.
[14] Patibandla, R. S. M. L., &Veeranjaneyulu, N. (2018). Survey on clustering algorithms for unstructured data. In Advances in Intelligent Systems and Computing (Vol. 695). Springer Singapore. https://doi.org/10.1007/978-981-10-7566-7_41
[15] Patrício, D. I., &Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and Electronics in Agriculture, 153(June), 69–81. https://doi.org/10.1016/j.compag.2018.08.001
[16] Reisi-gahrouei, O., Homayouni, S., Mcnairn, H., & Hosseini, M. (2019). Crop biomass estimation using multi regression analysis and neural networks from multitemporal L-band polarimetric synthetic aperture radar data. 1161.https://doi.org/10.1080/01431161.2019.1594436
[17] Sott, M. K., Furstenau, L. B., Kipper, L. M., Giraldo, F. D., Lopez-Robles, J. R., Cobo, M. J., Zahid, A., Abbasi, Q. H., & Imran, M. A. (2020). Precision Techniques and Agriculture 4.0 Technologies to Promote Sustainability in the Coffee Sector: State of the Art, Challenges and Future Trends. IEEE Access, 8, 149854–149867. https://doi.org/10.1109/ACCESS.2020.3016325
[18] Trivelli, L., Apicella, A., Chiarello, F., Rana, R., Fantoni, G., &Tarabella, A. (2019). From precision agriculture to Industry 4.0: Unveiling technological connections in the agrifood sector. British Food Journal, 121(8), 1730–1743. https://doi.org/10.1108/BFJ-11-2018-0747
[19] Vineela, M. T., NagaHarini, J., Kiranmai, C., Harshitha, G., &AdiLakshmi, B. (2018). IoT Based Agriculture Monitoring and Smart Irrigation System Using Raspberry Pi.
[20] Wan, J., Tang, S., Shu, Z., Li, D., Wang, S., Imran, M., &Vasilakos, A. V. (2016). Software-Defined Industrial Internet of Things in the Context of Industry 4 . 0. 16(20), 7373–7380.
[21] Wuest, T., Weimer, D., Irgens, C., Thoben, K., Wuest, T., Weimer, D., Irgens, C., &Thoben, K. (2016). Machine learning in manufacturing : advantages , challenges , and applications. Production & Manufacturing Research, 3277, 1–23. https://doi.org/10.1080/21693277.2016.1192517
[22] Xie, C., Wang, R., Zhang, J., Chen, P., Chen, H., Dong, W., Li, R., & Chen, T. (2018). Multi-level learning features for automatic classi fi cation of fi eld crop pests ☆. 152(May), 233–241. https://doi.org/10.1016/j.compag.2018.07.014