IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 3- Issue 3, March 2014 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Non-Isolated Three Stage Interleaved Boost Converter For High Voltage Gain

[Full Text]

 

AUTHOR(S)

Arundathi Ravi, A.Ramesh Babu

 

KEYWORDS

Index Terms: voltage multiplier cell, interleaved boost converter, high voltage gain, efficiency, power factor correction, state switching cell, Electro magnetic interference.

 

ABSTRACT

Abstract: In this paper, three stage high step-up interleaved boost converter with voltage multiplier cells(VMCS) and three state switching cells(3SSC) is proposed. The new method has been examined under various scenarios, including the loss of switches, ripples and stress. In the proposed topology an additional stage of voltage multiplier i.e, three stages is added which will increase the voltage gain and efficiency, reduces switching and conduction loss, voltage and current stress across switches and ripples. Another important feature of this converter is the lower blocking voltage across the controlled switches compared to similar circuits, which allows the utilization of MOSFETs switches with lower conduction loss. The simulation of proposed converter was done using MATLAB and the stimulation result was validated.

 

REFERENCES

[1]. S. V. Araujo, R. P. Torrico-Bascope, G. V. Torrico-Bascope, and L. Menezes, “Step-up converter with high voltage gain employing threestate switching cell and voltage multiplier,” in Proc. Power Electron. Spec. Conf., 2008, pp. 2271–2277.

[2]. L. G. Junior,M. A. G. Brito, L. P. Sampaio, and C. A. Canesin, “Integrated inverter topologies for low power photovoltaic systems,” in Proc. Int. Conf. Ind. Appl., 2010, pp. 1–5.

[3]. R. D. Middlebrook, “Transformerless DC-to-DC converters with large conversion ratios,” IEEE Trans. Power Electron., vol. 3, no. 4, pp. 484–488, Oct. 1988

[4]. O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, “Boost converter with high voltage gain using a switched capacitor circuit,” in Proc. Int. Symp. Circuits Syst., 2003, pp. III-296–III-299.

[5]. K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” Proc. Inst. Elect. Eng.—Elect. Power Appl., vol. 151, no. 2, pp. 182–190, Mar. 2004.

[6]. Y. R. Novaes, A. Rufer, and I. Barbi, “A new quadratic, three-level, DC/DC converter suitable for fuel cell applications,” in Proc. Power Convers. Conf., Nagoya, Japan, 2007, pp. 601–607.

[7]. R. P. Torrico-Bascope, C. G. C. Branco, G. V. Torrico-Bascope, C. M. T. Cruz, F. A. A. de Souza, and L. H. S. C. Barreto, “A new isolated DC-DC boost converter using three-state switching cell,” in Proc. Appl. Power Electron. Conf. Expo., 2008, pp. 607–613.

[8]. Y. Jang and M. M. Jovanovic, “Interleaved boost converter with intrinsic voltage-doubler characteristic for universal-line PFC front end,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1394–1401, Jul. 2007.

[9]. J.-Y. Lee and S.-N. Hwang, “Non-isolated high-gain boost converter using voltage-stacking cell,” Electron. Lett., vol. 44, no. 10, pp. 644–645, May 2008.

[10]. J. Yungtaek and M. M. Jovanovic, “New two-inductor boost converter with auxiliary transformer,” IEEE Trans. Power Electron., vol. 19, no. 1, pp. 169–175, Jan. 2004.

[11]. K. W. Ma and Y. S. Lee, “An integrated flyback converter for dc uninterruptible power supply,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 318–327, Mar. 1996.

[12]. R. Kadri, J.-P. Gaubert, and G. Champenois, “An improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 66–75, Jan. 2011.

[13]. C. T. Choi, C. K. Li, and S. K. Kok, “Modeling of an active clamp discontinuous conduction mode flyback converter under variation of operating condition,” in Proc. IEEE Int. Conf. Power Electron. Drive Syst., 1999, pp. 730–733.

[14]. W. Li and X. He, “Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1239–1250, Apr. 2011.

[15]. S. V. Araujo, R. P. Torrico-Bascope, and G. V. Torrico-Bascope, “Highly efficient high step-up converter for fuel-cell power processing based on three-state commutation cell,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1987–1997, Jun. 2010.