IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 9 - Issue 4, April 2020 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Electrodeless Induction Lighting

[Full Text]

 

AUTHOR(S)

Sourin Bhattacharya, Imran Hossain Sardar, Subarna Roy and Sudipta Majumder

 

KEYWORDS

Electrodeless Lamps, Sulphur Lamps, Discharge Lamps, Fluorescent Induction Lamps, Plasma Lamps, Horticultural Lighting.

 

ABSTRACT

This paper reviews the current technology and usage trends of electrodeless fluorescent induction lamps and sulphur lamps. Induction lamps abide by the principle of electromagnetic induction. Visible light is generated by phosphor coating in case of fluorescent lamps and by sulphur molecules in case of sulphur lamps. The processes of light generation, spectral power characteristics, application areas, advantages and disadvantages in their utilization and the future scope of utility improvement are hereby briefly discussed and summarized.

 

REFERENCES

[1] Turner, B. P., Ury, M. G., Leng, Y., & Love, W. G. (1997). Sulfur lamps—progress in their development. Journal of the Illuminating Engineering Society, 26(1), 10-16.
[2] Coaton, J. R., Cayless, M. A., & Marsden, A. M. (1997). Lamps and lighting. Architectural Press, 216-226.
[3] Wharmby, D. O. (1993). Electrodeless lamps for lighting: a review. IEE Proceedings A (Science, Measurement and Technology), 140(6), 465-473.
[4] Shaffer, J. W., & Godyak, V. A. (1999). The development of low frequency, high output electrodeless fluorescent lamps. Journal of the illuminating Engineering Society, 28(1), 142-148.
[5] Shinomiya, M., Kobayashi, K., Higashikawa, M., Ukegawa, S., Matsuura, J., & Tanigawa, K. (1991). Development of the electrodeless fluorescent lamp. Journal of the Illuminating Engineering Society, 20(1), 44-49.
[6] Hiebert, E. N. (1995). Electric discharge in rarefied gases: the dominion of experiment. Faraday. Plücker. Hittorf. In No Truth Except in the Details (pp. 95-134). Springer, Dordrecht.
[7] Johnston, C. W. (2003). Johnston, C. W. (2003). Transport and equilibrium in molecular plasmas: the sulfur lamp. Eindhoven: Technische Universiteit Eindhoven..
[8] Johnston, C. W., Jonkers, J., & Van Der Mullen, J. J. A. M. (2002). Operational trends in the temperature of a high-pressure microwave powered sulfur lamp. Journal of Physics D: Applied Physics, 35(20), 2578.
[9] Macarena S., Pavlov A., Fomin N. (2011). Induction lamp - a source of high-quality and energy-efficient lighting. Sovr. Electronics, 9, 8-13.
[10] Maclennan, D. A., Turner, B. P., Dolan, J. T., Ury, M. G., & Gustafson, P. (1994). Efficient, full-spectrum, long-lived, non-toxic microwave lamp for plant growth. T. W. Tibbitts (ed.). International Lighting in Controlled Environments Workshop, NASA-CP-95-3309, 243-254.
[11] Aucott, M., McLinden, M., & Winka, M. (2003). Release of mercury from broken fluorescent bulbs. Journal of the Air & Waste Management Association, 53(2), 143-151.
[12] Tonzani, S. (2009). Time to change the bulb. Nature, 459(7245), 312-314.
[13] Horikoshi, S., Miura, T., Kajitani, M., & Serpone, N. (2008). Microwave discharge electrodeless lamps (MDEL). III. A novel tungsten-triggered MDEL device emitting VUV and UVC radiation for use in wastewater treatment. Photochemical & Photobiological Sciences, 7(3), 303-310.
[14] Klan, P., Literák, J., & Hájek, M. (1999). The electrodeless discharge lamp: a prospective tool for photochemistry. Journal of Photochemistry and Photobiology A: Chemistry, 128(1-3), 145-149.
[15] Benya, J. R. (2001). Lighting for Schools.
[16] Horikoshi, S., Kajitani, M., Horikoshi, N., Dillert, R., & Bahnemann, D. W. (2008). Use of microwave discharge electrodeless lamps (MDEL): II. Photodegradation of acetaldehyde over TiO2 pellets. Journal of photochemistry and photobiology A: Chemistry, 193(2-3), 284-287.
[17] Rosemann, A., & Kaase, H. (2005). Lightpipe applications for daylighting systems. Solar energy, 78(6), 772-780.
[18] Siminovitch, M., Gould, C., & Page, E. (1997). A high-efficiency indirect lighting system utilizing the solar 1000 sulfur lamp.
[19] Protzman, J. B., & Houser, K. W. (2006). LEDs for general illumination: The state of the science. Leukos, 3(2), 121-142.
[20] Doulos, L. T., Kontadakis, A., Madias, E. N., Sinou, M., & Tsangrassoulis, A. (2019). Minimizing energy consumption for artificial lighting in a typical classroom of a Hellenic public school aiming for near Zero Energy Building using LED DC luminaires and daylight harvesting systems. Energy and Buildings, 194, 201-217.
[21] Garcia-Llera, D., Rodriguez, C., Javier, A., Huerta-Medina, N., Rico-Secades, M., Corominas, E. L., & Barcia, P. Q. (2015, October). Optimizing LED lamps design for street lighting with staggered arrangement allowing energy saving strategies in a Lighting Smart Grid context. In 2015 IEEE Industry Applications Society Annual Meeting (pp. 1-8). IEEE.
[22] Chakraborty, S., Barua, P., Bhattacharjee, S., & Mazumdar, S. (2018). Road classification based energy efficient design and its validation for Indian roads. Light & Engineering, 26(2).