International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 9 - Issue 4, April 2020 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Antibacterial And Photocatalytic Properties Of Wet Chemically Fabricated Cus/Graphenenanocomposite

[Full Text]



Ashish Kumar Sahoo, Eeshwar Chandra Tripathy



Nanoparticle, Semiconductor, Graphene, Copper sulphide, Photocatalytic properties, Antibacterial Properties.



In the present work a simple wet chemical method has been adopted for synthesis CuS and CuS-Graphene composite in low temperature range of 50-90 0C. The specified materials were characterized by X-ray diffraction and scanning electron microscopic (SEM) studies. XRD analysis shows cubic phase of thus prepared sample and morphology analysis by SEM indicates mono dispersed particle morphology. The corresponding graphene composite has been investigated as an efficient adsorbant as well as photocatalyst in the decomposition of methyl orange (MO) dye in the presence of sun-light with 80% degradation efficiency for an exposure time of 100 min. In addition, the composites also exhibit enhanced antibacterial activity towards E.Coli.



[1] G. Borkow and J. Gabbay, Copper Oxide Impregnated Textiles with Potent Biocidal Activities Faseb J, 18, 1728 (2004)
[2] Want L. Hu C, Shao L; The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 2017: 12, 1227-1249
[3] Khameneh B; Diab R, Ghazvini K, FazlyBazzaz B.S. Breakthroughs in bacaterialresistancemethanisms and the potential ways to combat them. MicrobPothog. 2016, 95: 32-42.
[4] Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. alternative antimicrobial approach: nano-antimicrobial materials. Evid Based complement alternat Med. 2015, 2015, 24-6012.
[5] Pelgrift RY, Friedman A.J. Nanotechnology as therapeutic tool to combat microbial resistance. Adv. Drug Deliy Rev. 2013, 65, 1803-1815.
[6] Muhling M., Bradford A, Readman, J.W., Somerfield PJ, Handy RD. An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacterial in an estuarine sediment. Mar environ Res. 2009, 68, 278-283
[7]Milton Ohring Reliability and failure of electronic materials and devices Academic Press, 1998, ISBN 0-12-524985-3, p. 310.
[8] O. C. Compton and S. T. Nguyen, “Graphene oxide, highly reduced graphene oxide, and
graphene: versatile building blocksforcarbonbasedmaterials, Small, 2010, 6,711–
[9] T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee,“Recent advances in graphene
basedpolymercomposites,”ProgressinPolymerScience, 2010,35,1350–1375.
[10] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.;
Grigorieva, I. V.; Firsov, A. A. "Electric Field Effect in Atomically Thin
Carbon Films". Science. 2004, 306, 666–669
[10] Gimzewski, James K.; Zettl, A.; Klug, William S.; Ophus, Colin; Rasool, Haider I. (19
November 2013). "Measurement of the intrinsic strength of crystalline and polycrystalline
graphene".Nature Communications.4: 2811.ISSN 2041-1723.
[11]Structural and compositional changes in copper sulfide during leaching and dissolution, Whiteside L.S, Goble R.J, The Canadian Mineralogist; (1986);. 24; 2; 247-258
[12]Geerite, Cu1.60S, a new copper sulfide from Dekalb Township, New York, Goble R.J., Robinson G.,The Canadian Mineralogist;(1980),18,4,519-523
[13] Sha, Z. D.; Quek, S. S.; Pei, Q. X.; Liu, Z. S.; Wang, T. J.; Shenoy, V. B.; Zhang, Y. W. (8 August 2014). "Inverse Pseudo Hall-Petch Relation in Polycrystalline Graphene".Scientific Reports.4: 5991. Bibcode:2014NatSR...4E5991S. doi:10.1038/srep05991. ISSN 2045-2322.
[14]Sahoo AK, Srivastava SK (2013) Controllable architecture of CdS and CuS by single-source precursor-mediated J Nanopart Res (2014) 16:2473 Page 15 of 17 2473 123 approach and their photocatalytic activity. J Nanopart Res 15:1591–1605.
[15]Hewakuruppu, Y. L.; Dombrovsky, L. A.; Chen, C.; Timchenko, V.; Jiang, X.; Baek, S.; Taylor, R. A. (2013)."Plasmonic "pump–probe" method to study semi-transparent nanofluids".Applied Optics. 52 (24): 6041–6050. doi:10.1364/AO.52.006041.
[16]Buffat, Ph.; Borel, J.-P.(1976). "Size effect on the melting temperature of gold particles". Physical Review A. 13 (6): 2287–2298.
[17]Wu, Jiang; Yu, Peng; Susha, Andrei S.; Sablon, Kimberly A.; Chen, Haiyuan; Zhou, Zhihua; Li, Handong; Ji, Haining; Niu, Xiaobin (1 April 2015). "Broadband efficiency enhancement in quantum dot solar cells coupled with multispikedplasmonicnanostars". Nano Energy. 2015,13: 827–835.
[18]Taylor, Robert A; Otanicar, Todd; Rosengarten, Gary (2012)."Nanofluid-based optical filter optimization for PV/T systems". Light: Science & Applications. 1 (10):
[19]Yu, Peng; Yao, Yisen; Wu, Jiang; Niu, Xiaobin; Rogach, Andrey L.; Wang, Zhiming (9 August 2017). "Effects of Plasmonic Metal Core -Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells".Scientific Reports. 7 (1): 7696. doi:10.1038/s41598-017-08077-9. ISSN 2045-2322.PMC 5550503.PMID 28794487.
[20]"Nanotechnology Timeline | Nano". www.nano.gov. Retrieved 12 December 2016.
[21]Reiss, Gunter; Hutten, Andreas (2010)."Magnetic Nanoparticles". In Sattler, Klaus D. (ed.). Handbook of Nanophysics: Nanoparticles and Quantum Dots. CRC Press. pp. 2–1. ISBN 9781420075458.
[22]John Dakin, Robert G. W. Brown Handbook of optoelectronics, Volume 1, CRC Press, 2006 ISBN 0-7503-0646-7 p. 57
[23]Structural and compositional changes in copper sulfide during leaching and dissolution, Whiteside L.S, Goble R.J, The Canadian Mineralogist; (1986);. 24; 2; 247-258
[24]Geerite, Cu1.60S, a new copper sulfide from Dekalb Township, New York, Goble R.J., Robinson G.,The Canadian Mineralogist;(1980),18,4,519-523
[25]Li, Zhilin; Chen, Lianlian; Meng, Sheng; Guo, Liwei; Huang, Jiao; Liu, Yu; Wang, Wenjun; Chen, Xiaolong (2015). "Field and temperature dependence of intrinsic diamagnetism in graphene: Theory and experiment". Phys. Rev. B. 91 (9): 094429.
[26]E., Shinn; A., Hubler; D., Lyon; M., Grosse-Perdekamp; A., Bezryadin; A., Belkin (22 October 2012). "Nuclear Energy Conversion with Stacks of Graphene Nano-capacitors". Complexity. 18 (3): 24–27.
[27]Kasuya, D.; Yudasaka, M.; Takahashi, K.; Kokai, F.; Iijima, S. (2002)."Selective Production of Single-Wall Carbon Nanohorn Aggregates and Their Formation Mechanism". J. Phys. Chem. B. 106 (19): 4947–4951. doi:10.1021/jp020387n.
[28] Bernatowicz; T. J.; et al..(1996). "Constraints on stellar grain formation from presolar graphite in the Murchison meteorite".Astrophysical Journal. 472 (2): 760–782
[29]Fraundorf, P.; Wackenhut, M. (2002)."The core structure of presolar graphite onions".Astrophysical Journal Letters. 578 (2): L153–156.