IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 9 - Issue 4, April 2020 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Real-Time Implementation Of A New Efficient Algorithm For Source Separation Using Matlab & Arduino Due

[Full Text]

 

AUTHOR(S)

Mohcin Mekhfioui, Rachid Elgouri, Amal Satif, Laamari Hlou

 

KEYWORDS

Blind Source Separation, BSS,ACI, Arduino Due, Matlab/Simulink, Real Time Workshop.

 

ABSTRACT

The Blind signal separation consists of figuring out a hard and fast of indicators of the unknown source from a hard and fast of located signals. This work describes an efficient method to implement a general-purpose blind source separation algorithm on a low-cost microcontroller, without advanced knowledge of programming languages. The choice of the separation algorithm is based on the calculation of the Signal to Interference Report (SIR) inside the Arduino Due board. The basic signals are generated by two generators and sent to the Arduino board via the analog pins.

 

REFERENCES

[1] C. Jutten and J. Herault, "Space or time adaptive signal processing by neural network models," AIP Conference Proceedings, pp. 206-211, 1986.
[2] C. Jutten and J. Herault, «Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture,» Signal Processing, vol. 24, n° %11, pp. 1-10, 1991.
[3] K. Yiu et S. Y. Low, «On a Real-Time Blind Signal Separation Noise Reduction System,» International Journal of Reconfigurable Computing, vol. 2018, p. 9, 2018.
[4] M. Mekhfioui et al., « A Comparative Study and Implementation of Blind Source Separation Algorithm using MATLAB and TMS320c6713 DSK », J. Eng. Appl. Sci., vol. 15, no 5, p. 1074‑1081, dec. 2019, doi: 10.36478/jeasci.2020.1074.1081.
[5] H. Arahmane, E. Hamzaoui et R. Cherkaoui El Moursli, «Neutron Flux Monitoring Based on Blind Source Separation Algorithms in Moroccan TRIGA MARK II Reactor,» Science and Technology of Nuclear Installations, vol. 2017, 2017.
[6] «Arduino Due,» Arduino Inc, [En ligne]. Available: https://store.arduino.cc/due. [Accessed 05 02 2020].
[7] K. Nordhausen et J. Virta, «An overview of properties and extensions of FOBI,» Knowledge-Based Systems, vol. 173, pp. 113-116, 2019.
[8] X. Li et X. Zhang, «Sequential Blind Extraction Adopting Second-Order Statistics,» IEEE Signal Processing Letters, vol. 14, n° %11, pp. 58-61, 2007.
[9] J. F. Cardoso et A. Souloumiac, «Blind beamforming for non-Gaussian signals,» IEEE Proceedings F - Radar and Signal Processing, vol. 140, n° %16, pp. 362-370, 1993.
[10] A. Cichocki, S. Osowski et K. Siwek, «Prewhitening Algorithms of Signals in the Presence of White Noise,» chez 6th International Workshop Computational Problems of Electrical Engineering, Zakopane, Poland, 2004.
[11] C. Wang, J. Wang et T. Zhang, «Operational modal analysis for slow linear time-varying structures based on moving window second order blind identification,» Signal Processing, Vols. %1 sur %2169-186, p. 133, 2017.
[12] L. Tang, R. Liu, V. C. Soon et Y. Huang, «Indeterminacy and identiability of blind identication,» IEEE Transactions on Circuits and Systems, vol. 38, n° %15, pp. 499-509, 1991.
[13] S. Ding, «A Power Iteration Algorithm for ICA Based on Diagonalizations of Non-Linearized Covariance Matrix,» chez First International Conference on Innovative Computing, Information and Control, Beijing, 2006, pp. 730-733.
[14] A. Hyvärinen et E. Oja, «A Fast Fixed-Point Algorithm for Independent Component Analysis,» Neural Computation, vol. 9, n° %17, pp. 1483-1492, 1997.
[15] «Arduino Support from MATLAB,» MathWorks, Inc, [En ligne]. Available: https://www.mathworks.com/hardware-support/arduino-matlab.html. [Accessed 05 02 2020].
[16] M. Mekhfioui, R. Elgouri, A. Satif and L. Hlou, « Arduino Due Implementation of an Algorithm for Blind Source Separation using Matlab Simulink», International Journal of Innovative Technology and Exploring Engineerin, vol. 9, no 2, p. 3692-3696, dec. 2019, doi:10.35940/ijitee.B7385.129219.
[17] A. Cichocki, S. Amari, K. Siwek, T. Tanaka et Anh Huy Phan, «ICALAB Toolboxes, Version 3.0.,» 2007. [En ligne]. Available: www.bsp.brain.riken.jp/ICALAB.