IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 9 - Issue 4, April 2020 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



The Study Of The Elements Of Fractal Geometry As A Means Of Integrating Knowledge In Mathematics And Computer Science In The Educational Process Of A Secondary School Students

[Full Text]

 

AUTHOR(S)

Zakhiya Akhmedovna Narimbetova

 

KEYWORDS

fractal geometry, geometric creativity, creative thinking, animation, fractals.

 

ABSTRACT

This article was written with the aim of developing methodological foundations for building an integrated course "Fractal Geometry at School", which helps to increase interest in the study of mathematics and computer science, as well as to improve the quality of assimilation of knowledge, training in mathematics and the level of development of students' mental activity. The following tasks are posed in the article, and their solutions are given: to study and analyze scientific and methodological literature, Internet sources, software on the research topic, to identify the degree of development of the problem from a theoretical and practical point of view; to analyze existing scientific approaches and practical experience in studying the elements of fractal geometry by students of secondary schools; to reveal the aesthetic potential of fractal geometry, its role in the formation of a holistic natural-science picture of the world and to outline ways of implementation in an integrated course; to develop the content of the integrated course and the system of tasks for studying the elements of fractal geometry by schoolchildren of a comprehensive school; to develop a methodology for studying the elements of fractal geometry for secondary school students on the basis of creating a model for the implementation of integrative interaction between mathematics and computer science; experimentally verify the validity of the hypothesis of research by conducting a pedagogical experiment, processing and analyzing its results. The article defines the methods, tools and forms of training, developed conclusions.

 

REFERENCES

[1] Azevich A. I. Fraktaly: geometrija i iskusstvo / A. I. Azevich // Matematika v shkole. 2005, #4. - pp.76 - 78.
[2] Afaunov, V. V. Fraktal'nyj analiz kak sposob opisanija strukturnoj stabilizacii modificirovannogo polijetilena: Dis. kand. him. nauk: Nal'chik, 2003.- p.144.
[3] Bozhokin, S. V. Fraktaly i mul'tifraktaly / S. V. Bozhokin, D. A. Parshin. M; Izhevsk: NIC «Reguljarnaja i haoticheskaja dinamika», 2001.- p.128.
[4] Budjanskij, M. V. Haoticheskaja advencija i fraktaly v nestandartnom ploskom potoke: Dis. . kand. fiziko-mat. nauk. Vladivostok, 2005, - p. 113.
[5] Gilford Dj. Tri storoni intellekta//Psixologiya mishleniya: sb. perevodov/pod red. A.M.Matyushkina.-Mocow, Progress, 1965, pp. 433-456.
[6] Dikov, A. V. Komandy na Logo konstruirujut fraktaly. / A. V. Dikov // Matematika v shkole. 2005. - #4. - pp. 78-80.
[7] Kronin, G. V. Postroenie fraktalov / G. V. Kronin // Komp'juternye instrumenty v obrazovanii. #5. - 2001.
[8] Kronover, R. M. Fraktaly i haos v dinamicheskih sistemah / R. M. Kronover / Per. s angl. pod red. T. Je. Krjenkelja. M.: Postmarket, 2000.- p. 352.
[9] Mandel'brot, B. Fraktal'naja geometrija prirody / B. Mandel'brot. M.: Institut komp'juternyh issledovanij, 2002. – p. 656.
[10] Morozov, A. D. Vvedenie v teoriju fraktalov / A. D. Morozov. Moskva; Izhevsk: Institut komp'juternyh issledovanij, 2002. – p. 159.
[11] Pajtgen, X. O. Krasota fraktalov. Obrazy kompleksnyh dinamicheskih sistem / X. O. Pajtgen, P. X. Rihter. Per. s ang.pod red. A.N. Sharkovskogo. M.: Mir, 1993, - p. 176.
[12] Petrov, M. N. Komp'juternaja grafika. Uchebnik / M. N. Petrov, V. P. Molochkov. SPb.: Piter, 2002. – p. 736.
[13] Rozov, N. X. Problema razmeshhenija novyh ponjatij i ob"ektov v shkol'nom kurse matematiki. // Materialy vserossijskoj nauchno-prakticheskoj konferencii «Sovremennyj urok matematiki: teorija i praktika». Nizhnij Novgorod, 2005. – p. 56-64.
[14] Sekovanov, V. S. Formirovanie kreativnoj lichnosti studenta vuza pri obuchenii matematike na osnove novyh informacionnyh tehnologij / V. S. Sekovanov. Kostroma: 2004. – p. 231.
[15] Selevko, G. K. Sovremennye obrazovatel'nye tehnologii: Uchebnoe posobie / G. K. Selevko M.: Narodnoe obrazovanie, 1998. – p. 256.
[16] Smirnov, E. I. Tehnologija nagljadno-model'nogo obuchenija matematike: Monografija. / E. I. Smirnov. Jaroslavl': JaGPU im. K.D.Ushinskogo, 1998. – p. 313.
[17] Testov, V. A. Strategija obuchenija matematike: Monografija. Feder, Ens Fraktaly / Ens Feder. M.: Mir, 1991. – p. 254.
[18] Shabarshin, A. A. Vvedenie vo fraktaly / A. A. Shabarshin. -Ekaterinburg, 1998. – p. 150.
[19] Shiljaev, P. A. Fraktal'nyj analiz poverhnosti sloev kremnija, vyrashhennyh metodom molekuljarno-luchevogo osazhdenija: Dis. kand. fiz.-mat. nauk. -N. Novgorod, 2005. – p.133.
[20] Shreder, M. Fraktaly, haos, stepennye zakony: (miniatjury iz beskonechnogo raja) / M. Shreder. Nauchno-izdatel'skij centr «Reguljarnaja i haotichnaja dinamika», 2001. – p. 528.
[21] Makhmudova D.M. Use of problem tasks in development of independent creative activity of students. International Journal of Innovative Technology and Exploring Engineering (IJITEE), ISSN: 2278-3075, Volume-IX, Issue-II, December 2019. Aviable to: http://www.ijitee.org/download/volume-9-issue-2.
[22] Kuralov Y. Development of Geometric Creativity of Secondary School Students by Computer. IJSTR International Journal Of Scientific & Technology Research Volume 9, Issue 02, February 2020. pp. 4572-4576. Aviable to: http://www.ijstr.org/final-print/feb2020/Development-Of-Geometric-Creativity-Of-Secondary-School-Students-By-Computer.pdf.