IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 2- Issue 5, May 2013 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



A Minimum Quadratic Unbiased Estimation (Minque) Of Parameters In A Linear Regression Model With Sperical Disturbances

[Full Text]

 

AUTHOR(S)

Prof. P. Balasiddamuni, Dr. K. KiranPrakash, Dr. C. L. Kantha Rao, Mr. A. Venkata Prasad, Prof. R. Abbaiah, Mr. G. Mokesh Rayalu.

 

KEYWORDS

Index terms: Heteroscedasticity, Homoscedastic, Minimum Quadratic Unbiased Estimation (MINQUE)

 

ABSTRACT

Abstract:- The present study considered the familiar Gauss-Markov linear model Y = X  +  in which the error vector  has a zero mean vector and a covariance matrix , a diagonal matrix whose ith element is , the variance of ith observation Yi. Rao (1970) has suggested that the MINQUE theory for the vector of these heteroscedastic variances. In the present work, it has been assumed that the variance of error term will be a linear combination of certain independent variables i.e., = . Under this assumption the heteroscedastic variances and the parameters of the linear model have hence been estimated by using MINQUE theory.

 

REFERENCES

[1]. Ameiya, T (1973), “Regression Analysis when the Variance of the Dependent Variable is Proportional to the Square of its Expectations” JASA, 68, 928 – 934.

[2]. Ameiya, T (1977), “A Note on a Heteroscedastic Model” Journal of Econometrics, 6, 365 – 370.

[3]. Goldfeld, S.M. and R.E.Quandt (1972), “Nonlinear Methods in Econometrics, North-Holland, Amsterdam.

[4]. Hartley, H.O. and K.S.E. Jayatillake (1973), Estimation for Linear Models with Uneuqal Variances, JASA, 68, 189 – 192.

[5]. Horn, S.D. R.A. Horn and D.B.Duncan (1975), Estimating Heteroscedastic Variances in Linear Models, JASA, 70, 872 – 879.

[6]. Johnston, J. D. and W.A.Fuller (1980), “Lest Squares Estimation when the Covariance Matrix and Parameter Vector are Functionally Related”, JASA, 75, 176 – 181.

[7]. Kantha Rao, C.L. (1996), “Some New Estimation Procedures for Linear Models Under Heteroscedasticity”, Unpublished Ph.D., Thesis, Dept.of Statistics, S.V.University, Tirupati, India.

[8]. Lahari, K. and D.Egy (1981), “Joint Estimator and Testing for Functional form and Heteroscedasticity, Journal of Econometrics, 15, 299 – 307.

[9]. Magnus, J.R. (1978), “Maximum Likelihood Estimation of the GLS Model with unknown Parameters in the Disturbance Covariance Matrix, Journal of Econometrics, 7, 281 – 312.

[10]. Park, R.E. (1966), “Estimation with Heteroscadastic Error Terms”, Econometrica, 34, 888.

[11]. Rao, C.R. (1970), “Estimation of Heteroscedastic Variances in Linear Models”, JASA, 65, 161 – 172.

[12]. Rao, C.R. (1971), “Estimation of Variance and Covariance Components – MINQUE Theory, Journal of Multivariate Analysis, 1, 257 - 275.

[13]. Taylor, W.E. (1977), “Small Sample Properties of a Chess of Two Stage Aitken Estimators”, Econometrica, 45, 497 – 508.

[14]. Theil, H. (1971), “Principles of Econometrics, John Wiley & Sons., New York.