IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 3- Issue 5, May 2014 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Production And Partial Characterization Of a Thermostable, Alkaline And Organic Solvent Tolerant Lipase From Trichoderma atroviride 676

[Full Text]

 

AUTHOR(S)

Thiago Andrade Marques, Cristiani Baldo, Dionísio Borsato, Joao Batista Buzato, Maria Antonia Pedrine Colabone Celligoi

 

KEYWORDS

Index Terms: fermentation, lipase, optimization, organic solvents, thermo-alkaline, Trichoderma atroviride 676.

 

ABSTRACT

Abstract: The several industrial applications of lipases have stimulated interest in isolation of new enzymes from novel sources. In this study, the lipase production from Trichoderma atroviride 676 was optimized by statistical design methods. The response surface methodology based on 3(3-1) fractional factorial, showed that the yeast extract and MgSO4 played a significant role on lipase production, yielded an enzymatic activity of 101.75 U/ml. Using Box-Benhken design, the optimization of the temperature levels, pH and agitation rate resulted in the maximum enzyme production of 175.20 U/ml, obtained at 28 ºC, pH 6.0 and 105 rpm. The enzyme was optimally active at pH 8.0 and 35ºC, and was stable at pH 3.0-8.0 and temperature of 25ºC-75ºC. In addition, the lipase was highly stable on non-polar hydrophobic solvents as kerosene, n-dodecane and hexane. The new lipase from T. atroviride 676 could be considered a potential candidate for industrial and biotechnological applications.

 

REFERENCES

[1]. N. Gupta, V. Shai, R. Gupta (2007) Alkaline lipase from a novel strain Burkholderia multivorans: Statistical medium optimization and production in a bioreactor. Process Biochem., 42:518-526.

[2]. S. Z. Grbavcic, S. I. Dimitrijevic-Brankovic, D. I. Bezbradica, S. S. Siler-Marinkovic, Z. D. Knezevic (2007) Effect of fermentation conditions on lipase production by Candida utilis. J Serb Chem Soc., 72:757-765.

[3]. L. P. G. Franken, N. S. Marcon, H. Treichel, D. Oliveira, D. M. G. Freire, C. Dariva, j. Destain, J. V. Oliveira (2010) Effect of treatment with compressed propane on lipases hydrolytic activity. Food Bioprocess Tech., 3:511-520.

[4]. Y. Fang, Y. Lu, F. Lv, X. Bie, H. Zhao, Y. Wang, Z. Lu (2009) Improvement of alkaline lipase from Proteus vulgaris T6 by directed evolution. Enzyme Microb Technol., 44:84-88.

[5]. S. M. Basheer, S. Chellappan, P. S. Beena, R. K. Sukumaran, K. K. Elyas, M. Chandrasekaran (2011) Lipase from marine Aspergillus awamori BTMFW032: Production, partial, purification and application in oil effluent treatment. N Biotechnol., 28:627-638.

[6]. Y. Lin, G. Chen, M. Ling, Z. Liang (2010) A method of purification, identification and characterization of β-glucosidase from Trichoderma koningii AS3.2774. J Microbiol Methods., 83:74-81.

[7]. L. Zhang, Y. Liu, X. Niu, Y. Liu, W. Liao (2012) Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma reesei Rut C-30 and corresponding enzymatic hydrolysis. Biomass Bioenergy 37:16-24.

[8]. P. S. Delabona, C. S. Farinas, M. R. Silva, S. F. Azzoni, J. G. C. Pradella (2012) Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production. Bioresour Technol., 107:517-521.

[9]. A. L. Grigorevski-Lima, M. M. Q. Oliveira, R. P. Nascimento, E. P. S. Bon, R. R. R. Coelho (2013) Production and partial characterization of cellulases and xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass. Appl Biochem Biotechnol., 169:1373-1385.

[10]. T. A. Marques, C. Baldo, D. Borsato, J. B. Buzato, M. A. P. C. Celligoi (2014) Utilization of dairy effluent as alternative fermentation medium for microbial lipase production. Rom Biotech Lett., 19: 1908-1916.

[11]. A. Salihu, M. D. Z. Alam, M. I. Abdulkarim, H. M. Salleh (2011) Effect of process parameters on lipase production by Candida cylindracea in stirred tank bioreactor using renewable palm oil mill effluent based medium. J Mol Catal B: Enzym., 72:187-192.

[12]. M. Hasan-beikdashti, H. Forootanfar, M. S. Safiarian, A. Ameri, M. H. Ghahremani, M. R. Khoshayand, M. A. Faramarzi (2012) Optimization of culture conditions for production of lipase by a newly isolated bacterium Stenotrophomonas maltophilia. J Taiwan Inst Chem Eng., 43:670-677.

[13]. U. K. Winkler and M. Stuckmann (1979) Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J Bacteriol., 138:663-670.

[14]. M. Sifour, T. I. Zaghloul, H. M. Saeed, M. M. Berekaa, Y. R. Abdel-Fattah (2010) Enhanced production of lipase by the thermophilic Geobacillus stearothermophilus strain-5 using statistical experimental. N Biotechnol., 27:330-336.

[15]. K. Ramani, L. J. Kennedy, M. Ramakrishnan, G. Sekaran (2010) Purification, characterization and application of acidic lipase from Pseudomonas gessardii using beef tallow as a substrate for fats and oil hydrolysis. Process Biochem., 45:1683-1691.

[16]. E. Wolski, E. Menusi, D. Remonatto, R. Vardanega, F. Arbter, E. Rigo, J. Ninow, M. A. Mazutti, M. Di Luccio, D. Oliveira, H. Treichel (2009) Partial characterization of lipases produced by a newly isolated Penicillium sp. in solid state and submerged fermentation: A comparative study. Food Sci Technol., 42:1557-1560.

[17]. Z. Li, X. Li, Y. Wang, Y. Wang, F. Wang, J. Jiang (2011) Expression and characterization of recombinant Rhizopus oryzae lipase for enzymatic biodiesel production. Bioresource Technol., 102:9810-9813.

[18]. Z. Liu, Z. Chi, L. Wang, J. Li (2008) Production, purification and characterization of an extracellular lipase from Aureobasidium pullulans HN2.3 with potential application for the hydrolysis of edible oils. Biochem Eng J,. 40: 445-451.

[19]. S. A. Mohamed, H. M. Abdel-Mageed, S. A. Tayel, M. A. El-Nabrawi, A. S. Fahmy (2011) Characterization of Mucor racemosus lipase with potential application for the treatment of cellulite. Process Biochem., 46:642-648.

[20]. H-Y., Yoo, J.R. Simkhada, S. S. CHO, D. H. Park, S. W. Kim, C. N. Seong, J. C. Yoo, (2011) A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresource Technol., 102:6104-6111.

[21]. Y. Cai, L. Wang, X. Liao, Y. Ding, J. Sun (2009) Purification and partial characterization of two new cold-adapted lipases from mesophilic Geotrichum sp. SYBC WU-3. Process Biochem., 44:786-790.

[22]. H-W. Yu, J. Han, N. Li, X-S. Qie, Y-M. Jia (2009) Fermentation Performance and Characterization of Cold-Adapted Lipase Produced with Pseudomonas Lip35. Agricul Scien China., 8:956-962.

[23]. K-P. Zhang, J-Q. Lai, Z-L. Huang, Z. Yang (2011) Penicillium expansum lipase-catalyzed production of biodiesel in ionic liquids. Bioresource Technol., 102:2767-2772.

[24]. S. J. Chen, C. Y. Cheng, T. L. Chen (1998) Production of an Alkaline Lipase by Acinetobacter radioresistens. J. Ferment. Bioeng., 86:308-312.

[25]. H. Horchani, H. Mosbah, N. B. Salem, Y. Gargouri, A. Sayari (2009) Biochemical and molecular characterisation of a thermoactive, alkaline and detergent-stable lipase from a newly isolated Staphylococcus aureus strain. J Mol Catal B: Enzym., 56:237-245.

[26]. G.D. Haki and S.K. Rakshit (2003) Developments in industrially important thermostable enzymes:a review. Bioresource Technol.,89:17–34.

[27]. B. H. Cadirci and I. Yasa (2010) An organic solvents tolerant and thermotolerant lipase from Pseudomonas fluorescens P21. J Mol Catal B: Enzym., 64:155-161.

[28]. D. S. Dheeman, S. Antony-Babu, J. M. Frías, G. T. M. Henehan (2011) Purification and characterization of an extracellular lipase from a novel strain Penicillium sp. DS-39 (DSM 23773). J Mol Catal B: Enzym., 72:256-262.

[29]. P. Mander, S. S. Cho, J. R. Simkhada, Y. H. Choi, D. J. Park, J. C. Yoo (2012) An organic solvent–tolerant lipase from Streptomyces sp. CS133 for enzymatic transesterification of vegetable oils in organic media. Process Biochem., 47:635-642.

[30]. C. M. Romero, L. M. Pera, F. Loto, C. Vallejos, G. Castro, M. D. Baigori (2012) Purification of an organic solvent-tolerant lipase from Aspergillus niger MYA 135 and its application in ester synthesis. Biocatal and Agricul Biotechnol., 1:25-31.

[31]. G. Ruchi, G. Anshu, S. K. Khare (2008) Lipase from solvent tolerant Pseudomonas aeruginosa strain: Production optimization by response surface methodology and application. Bioresource Technol.,99:4796-4802.

[32]. L. D. Castro-Ochoa, C. Rodríguez-Gómez, G. Valerio-alfaro, R. O. ROS (2005) Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme Microb Tech., 37:648-654.