International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020


IJSTR >> Volume 6 - Issue 6, June 2017 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Susceptibility Status Of Anopheles Gambiae Complex To Insecticides Commonly Used For Malaria Control In Northern Nigeria

[Full Text]



Habibu U. Abdu, Yayo A. Manu, Yusuf Y. Deeni



Anopheles coluzzii, Anopheles gambiae, Insecticides resistance, kdr, Malaria control, Nigeria, Susceptibility



This study was carried out to assess the level of susceptibility or resistance of sibling species of Anopheles gambiae complex from Auyo in Jigawa state between 2013 and 2014 to three classes of insecticides approved by World Health Organization (WHO) for vector control. A. gambiae larvae collected from ecologically contrasting breeding sites were reared to adults in the laboratory. Adults from the F1 progeny were assayed for resistance using the WHO adult insecticide susceptibility bioassay protocol. The mosquitoes were exposed to DDT, Permethrin and Bendiocarb belonging to 3 classes of insecticides approved by WHOPES for malaria vector control. The individual sibling species were identified molecularly and the molecular resistance mechanisms characterized by SINE and kdr PCR methods respectively. The An. gambiae populations tested were highly resistant to DDT and permethrin insecticides but less resistant to bendiocarb. Analysis of the genetic composition of the vector population revealed preponderance of An. coluzzii (> 77%). L1014F and L1014S kdr mutations correlated to insecticide resistance phenotype expression. This study indicates differential distribution of the resistant genotype of Anopheles malaria vector between ecologically different habitats in the area. The information could be useful in decision and planning making for vector control programs in the region.



[1] Coetzee, M. A., Craig, M. & le-Sueur, D. (2000): Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitology Today 16: 7477.

[2] World malaria report. Geneva, World Health Organization: 2012:195

[3] Kabula, B., Kisinza, W., Tungu, P., Ndege, C., Batengana, B., Kollo, D., Malima, R., Kafuko, J., Mohamed, M., and Magesa, S. (2014): Co-occurrence and distribution of East(L1014S) and West (L1014F) African knock-down resistance in Anopheles gambiae sensu lato population of Tanzania. Tropical Medicine and International Health, doi. 10.1111/tmi.12248.

[4] USAID/PMI/CDC: Nigeria FY 2012 Malaria Operational Plan.2011,pp:46 pmi.gov/countries/mops/fy12 /nigeria_ mop_fy12.pdf

[5] Kolade, T. I., Kehinde, O. P., Oluwatobi, R. A., Adedapo, O. A. and Audu, K. O. (2013): Susceptibility of Anopheles gambiae sensu lato to permethrin, deltamethrin and bendiocarb in Ibadan city, southwest Nigeria. Current Research Journal of Biological Sciences, 5 (2): 42-48

[6] Zainab, G., Zainab, T. (2013): Post-intervention assessment of long-lasting insecticide nets (LLINs) distributed in the Kano metropolis, Kano State, Nigeria. Advances in Entomology, Vol.1, No.2, 38-41

[7] Rufa’i, A. (2015): Jigawa achieve malaria reduction. www.thenationonlineng.net/nes

[8] WHO, 2010b WHO (2010b): World malaria report. World Health Organization, Geneva.

[9] Ranson, H., N’Guessan, R., Lines, J., Moiroux, N., Nkuni, Z., and Corbel, V. (2011): Pyrethroid resistance in African Anopheline Mosquitoes: What are the implications for malaria control? Trends Parasitol, 27: 91-98

[10] Wondji, C. S., Coleman, M., Kleinshmidt, I., Mzilahowa, T., Irving, H., Ndula, M, Rehman, A., Morgan, J., Barnes, K. G., Hemingway, J. (2012): Impact of pyrethroid resistance on operational malaria control in Malawi. Proc. Natl. Acad. Sci, 109:47 19063-70

[11] Martinez-Torres D, Chandre, F., Williamson, M. S., Darriet, F., Berge, J. B., Devonshire, A.L., Guillet, P., Pasteur, N., Pauron, D. (1998): Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol, 7(2): 179–184

[12] Ranson, H., Jensen, B., Vulule, J. M., Wang, X., Hemingway, J., Collins, F. H. (2000): Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol, 9(5): 491–497

[13] Raymond, M., Arnaouty, V. B., Sivasubramanian, N., Mouches, C., Georghiou, G. P., Pasteur, N. (1989): Amplification of variousesterases B’s responsible for organophosphate resistance in Culex mosquitoes. Biochem. Genet, 27: 417-423

[14] Muller, P., Chouaibou, M., Pignatelli, P., Etang, J., Walker, E. D., Donnelly, M. J., Simard, F., Ranson, H. (2008): Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in Northern Cameroon. Mol. Ecol. 17, 1145e1155

[15] Das, S., Garver, L., Dimopoulos, G. (2007): Protocol for mosquito rearing (An. gambiae). J Vis Exp, Issue 5: 221

[16] Gillies MT, De Meillon B: The anophelinae of Africa South of the Sahara Second edition. South African Institute of Medical Research Johannesburg, 1968

[17] Gillies, M. T. and Coetzee, M. (1987): A supplement to the Anophelinae of Africa south of the Sahara. Pub. South African Inst. Med. Res., 55: 1-143

[18] WHO (1998): Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and Persistence of insecticides in treated surfaces: Report of the WHO informal consultation.

[19] Santolamazza, F., Mancini, E., Simard, F., Qi, Y., Tu, Z., Della Torre, A. (2008): Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J, 7: 163

[20] Bass, C., Nikou, D., Donnelly, M. J., Willamson, M. S.,Ranson, H., Ball, A., Vontas, J. and Field, L. M. (2007): Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods. Malar J, 6:111
[21] Livak, K. J. (1999): Allelic discrimination using fluorogenic probes and the 5’ nuclease assay. Genetic Anal, 14:143-149

[22] Abbott, W. S. (1987): A method of computing the effectiveness of an insecticide. J. Am. Mosq. Cont. Assoc. 1987, 3: 302-303

[23] WHO (2013c): Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva, World Health Organization.

[24] Ibrahim, S. S., Yayo, A. M., Tukur, Z., Irving, H. and Wondji, C. S. (2014): High frequency of kdr L1014F is associated with pyrethroid resistance in Anopheles coluzzii in Sudan savannah of northern Nigeria. BMC Infectious Diseases, 14: 441

[25] Bigoga, J. D., Ndangoh, D. N., Awono-Ambene, P. H., Patchoke, S., Fondjo, E., et al. (2012): Pyrethroid resistance in Anopheles gambiae from the rubber cultivated area of Niete, South Region of Cameroon. Acta Trop 124: 210–214.

[26] Chandre, F., Darriet, F., Manguin, S., Brengues, C., Carnevale, and P. Guillet, P. (1999): Pyrethroid cross-resistance spectrum among populations of Anopheles gambiae s.s. from Cote D’Ivoire. J. Am. Mosq. Cont. Assoc. 15: 53-59

[27] Davies, T. G. E., Field, L. M., Usherwood, P. N. R. and Williamson, M. S. (2007): DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life, 59: 151-162

[28] Alhassan, A. J., Sule, M. S., Dan Gambo, M. A., Yayo, A. M., Safiyanu, M. and Sulaiman, D. (2015): Detoxification Enzymes Activities in DDT and Bendiocarb resistant and susceptible malarial vector (Anopheles gambiae) breed in Auyo residential and irrigation sites, northwest Nigeria European Scientific Journal, 11: 9

[29] Yewhalaw, D., Wassie, F., Steurbaut, W., Spanoghe, P., Van Bortel, W., Denis, L., et al. (2011): Multiple insecticide resistance: an impediment to insecticide-based malaria vector control program. PLoS ONE, 6:e16066. http://dx.doi.org/10.1371/journal. pone.0016066

[30] Awolola, T.S., Oduola, A., Oyewole, I.O., Obansa, J.B. Amajoh, C., Koekemoer, L. and Coetzee, M. (2007): Dynamics of knockdown pyrethroid insecticide resistance alleles in a field population of Anopheles gambiae s.s. in southwestern Nigeria. J. Vect. Borne Diseases, 44: 181-188

[31] Adeogun, A., Olojede, J., Oduola, A. and Awolola, T. (2012): Village-scale evaluation of PermaNet 3.0: an enhanced efficacy combination long-lasting insecticidal net against resistant populations of Anopheles gambiae s.s. Malar Chemother Control Elimination, 1: 9
[32] Akogbeto, M.C. Djouaka, R.F., Kinde – Gazard, D. A. (2006): Screening of pesticide residues in soil and water Samples from agricultural settings. Malar J, 5: 22

[33] Adedayo, O.O., Olojede, J. B., Ashiegbu, C. O., Adeogun, A. O., Olubunmi, O. A. and Awolola, T. S.(2010): High level of DDT resistance in the malaria mosquito; Anopheles gambiae s.l. from rural, semi urban and urban communities in Nigeria. J. Rural Trop Public Health, 9: 114 ‐120

[34] Marcombe, S., Darriet, F., Tolosa, M., Agnew, P., Duchon, S., Etienne, M., Yp Tcha, M. M., Chandre, F., Corbel, V., Yebakima, A. (2011): Pyrethroid resistance reduces the efficacy of space sprays for dengue control on the island of Martinique (Caribbean). PLoS Negl. Trop Dis, 5, e1202

[35] Dykes, C. L., Kushwah, R. S., Das, M. K., Sharma, S. N. et al. (2015): Knockdown resistance (kdr) mutations in Indian Anopheles culicifacies populations, Parasites & Vectors, 8: 333

[36] Li, C. X., Kaufman, P. E., Xue, R. D., Zhao, M. H., et al. (2015): Relationship between insecticide resistance and kdr mutations in the dengue vector Aedes aegypti in southern China, Parasites & Vectors, 8: 325

[37] Coluzzii, M. (1984): Heterogeneities of the malaria vectorial system in tropical Africa and their significance in malaria epidemiology and control. Bull World Health Organ, 62(Suppl):107–113

[38] Kwiatkowska, R. M., Platt, N., Poupardin, R, Irving, H., Dabire, R. K., Mitchell, S., Jones, C. M., Diabate, A., Ranson, H., Wondji, C. S. (2013): Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from Vallee du Kou, Burkina Faso. Gene, 519(1): 98–106