IJSTR

International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us
CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT
QR CODE
IJSTR-QR Code

IJSTR >> Volume 2- Issue 6, June 2013 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Image Enhancement Using Adaptive Neuro-Fuzzy Inference System

[Full Text]

 

AUTHOR(S)

R.Pushpavalli, G.Sivarajde

 

KEYWORDS

Index Terms: Adaptive Neuro-fuzzy Inference System, Image denoising, image enhancement, Nonlinear switching median filters.

 

ABSTRACT

Abstract: This paper presents a hybrid filter for denoising and enhancing digital image in situation where the image is corrupted by salt and pepper noise. Image denoising and enhancement are important preprocessing and post processing steps in image analysis. Successful results of image analysis extremely depend on image enhancement. There are several filters have been illustrated till date. But they are highly sensitive to noise. The structure of the proposed hybrid filter, to make the process robust against noise, is a combination of nonlinear switching median filter and neuro-fuzzy network. The internal parameters of the neuro-fuzzy network are adaptively optimized by training. The most distinctive feature of the proposed operator offers excellent line, edge, and fine detail preservation performance while, at the same time, effectively removing noise from the input image. The proposed filter is evaluated under different noisy condition on several test images and also compared with already existing filters for performance evaluation.

 

REFERENCES

[1] J. W. Tukey, “Nonlinear (nonsuperposable) methods for smoothing data”, in Proc. Conf. Rec. EASCON, 1974, p. 673.

[2] Exploratory Data Analysis. Reading, MA: Addison-Wesley, 1977.

[3] S. E. Umbaugh, Computer Vision and Image Processing. Upper Saddle River, NJ: Prentice-Hall, 1998.

[4] O. Yli-Harja, J. Astola, and Y. Neuvo, “Analysis of the properties of median and weighted median filters using threshold logic and stack filter representation”, IEEE Trans. Signal Processing, vol. 39, pp. 395–410, Feb. 1991.

[5] S.-J. Ko and Y. H. Lee, “Center weighted median filters and their applications to image enhancement”, IEEE Trans. Circuits Syst., vol. 38, pp. 984–993, Sept. 1991.

[6] B. Jeong and Y. H. Lee, “Design of weighted order statistic filters using the perception algorithm”, IEEE Trans. Signal Processing, vol. 42, pp. 3264–3269, Nov. 1994.

[7] T. Chen, K.-K. Ma, and L.-H. Chen, “Tri-state median filter for image denoising”, IEEE Trans. Image Processing, vol. 8, pp. 1834–1838, Dec. 1999.

[8] T. Chen and H. R.Wu, “Impulse noise removal by multi-state median filtering”, in Proc. ICASSP’2000, Istanbul, Turkey, 2000, pp. 2183–2186.

[9] T. Chen and H. R. Wu, “Space variant median filters for the restoration of impulse noise corrupted images”, IEEE Trans. Circuits Syst. II, vol. 48, pp. 784–789, Aug. 2001.

[10] “Adaptive impulse detection using center-weighted median filters,” IEEE Signal Processing Lett., vol. 8, pp. 1–3, Jan. 2001.
[11] “Application of partition-based median type filters for suppressing noise in images”, IEEE Trans. Image Processing, vol. 10, pp. 829–836, June 2001.

[12] M. E. Yüksel and E. Bes¸dok, “A simple neuro-fuzzy impulse detector for efficient blur reduction of impulse noise removal operators for digital images”, IEEE Trans. Fuzzy Syst., vol. 12, no. 6, pp. 854–865, Dec. 2004.

[13] M. E. Yüksel, A. Bas¸türk, and E. Bes¸dok, “Detail preserving restoration of impulse noise corrupted images by a switching median filter guided by a simple neuro-fuzzy network,” EURASIP J. Appl. Signal Process., vol. 2004, no. 16, pp. 2451–2461, 2004.

[14] T. Chen, K.-K. Ma, and L.-H. Chen, “Tri-state median filter for image denoising,” IEEE Trans. Image Process., vol. 8, no. 12, pp. 1834–1838, Dec. 1999.

[15] D. Florencio and R. Schafer, “Decision-based median filter using local signal statistics”, presented at the SPIE Int. Symp. Visual Communications Image Processing, Chicago, IL, Sept. 1994.

[16] T. Sun and Y. Neuvo, “Detail-preserving median based filters in image processing”, Pattern Recogn. Lett., vol. 15, no. 4, pp. 341–347, 1994.

[17] Z. Wang and D. Zhang, “Progressive switching median filter for the removal of impulse noise from highly corrupted images,” IEEE Trans. Circuits Syst., vol. 46, pp. 78–80, Jan. 1999.

[18] S. Zhang and M. A. Karim, “A new impulse detector for switching median filters”, IEEE Signal Processing Lett., vol. 9, pp. 360–363, Nov. 2002.

[19] R.Pushpavalli and E.Srinivavsan, “ Multiple Decision Based Switching Median Filtering for Eliminating Impulse Noise with Edge and Fine Detail Preservation Properties” International conference on Signal Processing, CIT at Coimbatore, Aug. 2007.

[20] E.Srinivavsan and R.Pushpavalli, “ Multiple Decision Based Switching Median Filtering for Eliminating Impulse Noise with Edge and Fine Detail Preservation Properties” International conference on Signal Processing, CIT at Coimbatore, Aug. 2007.

[21] R.Pushpavalli and G.Sivaradje, “Nonlinear Filtering Technique for Preserving Edges and Fine Details on Digital Image”, International Journal of Electronics and Communication Engineering and Technology, January 2012, 3, (1),pp29-40.

[22] R.Pushpavalli and E.Srinivasan, “Decision based Switching Median Filtering Technique for Image Denoising”, CiiT International journal of Digital Image Processing, Oct.2010, 2, (10), pp.405-410.

[23] R. Pushpavalli, E. Srinivasan and S.Himavathi, “A New Nonlinear Filtering technique”, 2010 International Conference on Advances in Recent Technologies in Communication and Computing, ACEEE, Oct. 2010, pp1-4.

[24] R. Pushpavalli and G.Sivaradje, “New Tristate Switching Median Filter for Image Enhancement” International Journal of Advanced research and Engineering Technology, January-June 2012, 3, (1), pp.55-65.

[25] R.Pushpavalli, G.Shivaradje, E. Srinivasan and S.Himavathi, “ Neural Based Post Processing Filtering Technique For Image Quality Enhancement”, International Journal of Computer Applications, January-2012.

[26] Nguyen Minh Thanh and Mu-Song Chen, "Image Denoising Using Adaptive Neuro-Fuzzy System", IAENG International Journal of Applied Mathematics, February 2007.

[27] R.Pushpavalli, G.Shivaradje, E. Srinivasan and S.Himavathi, “ Neural Based Post Processing Filtering Technique For Image Quality Enhancement”, International Journal of Computer Applications, January-2012.

[28] M. E. Yüksel and E. Bes¸dok, “A simple neuro-fuzzy impulse detector for efficient blur reduction of impulse noise removal operators for digital images”, IEEE Trans. Fuzzy Syst., vol. 12, no. 6, pp. 854–865, Dec. 2004.

[29] M. E. Yüksel, A. Bastürk, and E. Bes¸dok, “Detail preserving restoration of impulse noise corrupted images by a switching median filter guided by a simple neuro-fuzzy network,” EURASIP J. Appl. Signal Process., vol. 2004, no. 16, pp. 2451–2461, 2004.