International Journal of Scientific & Technology Research

IJSTR@Facebook IJSTR@Twitter IJSTR@Linkedin
Home About Us Scope Editorial Board Blog/Latest News Contact Us

IJSTR >> Volume 3- Issue 6, June 2014 Edition

International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616

Identification Of Interplanetary Coronal Mass Ejection With Magnetic Cloud In Year 2005 At 1 AU

[Full Text]



D.S.Burud, R .S. Vhatkar, M. B. Mohite



Keywords: magnetic cloud (MC), interplanetary coronal mass ejection (ICME), minimum variance analysis (MVA).



Abstract: Coronal mass ejection (CMEs) propagate in to the interplanetary medium are called as Interplanetary Coronal Mass Ejection (ICME). A set of signatures in plasma and magnetic field is used to identify the ICMEs. Magnetic Cloud (MC) is a special kind of ICMEs in which internal magnetic field configuration is similar like flux rope. We have used the data obtained from ACE Advance Composition Explorer (ACE) based in-situ measurements of Magnetic Field Experiment (MAG) and Solar Wind Electron, Proton and Alpha Monitor (SWEPAM) experiment for the data of magnetic field and plasma parameters respectively. The magnetic field data and plasma parameters of ICMEs used to distinguish them as magnetic cloud, non magnetic cloud. We analyzed eighteen ICMEs observed during January 2005 to December 2005, which is the beginning of declining phase of solar cycle 23. The analysis of magnetic field in the frames of the flux ropes like structure using a Minimum Variance Analysis (MVA) method, and have identified 30% ICMEs in the year 2005, which shows magnetic field rotation in a plane and confirmed as ICMEs with MCs.



[1]. J. T. Gosling, Coronal mass ejections and magnetic flux ropes in interplanetary space. Geophysical Monograph Series, 58, 343-364, 1990.

[2]. Klein, L. W., and L. F. Burlaga, Interplanetary magnetic clouds at 1 AU, J. Geophys. Res. 87, 613, 1982.

[3]. Lepping, R.P., Behannon, K.W. Magnetic field directional discontinuities: 1. minimum variance errors. J. Geophys. Res. 85, 4695 –4703, 1980.

[4]. Burlaga, L., Sittler, E., Mariani, F., et al. Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP 8 observations. J. Geophys. Res. 86, 6673 –6684, 1981.

[5]. Burlaga,L . F., R. P. Lepping, and J . A. Jones, Global configuration of a magnetic cloud in Physics of Magnetic Flux Ropes, Geophys. Monogr. Ser., vol. 58, edited by C. T. Russell, E. R. Priest and L. C. Lee, pp. 373-378, AGU, WashingtonD, .C., 1990

[6]. Yao Li, Liu Shao-Liang, Jin Shu-Ping, Liu Zhen-Xing, Shi Jian-Kui,A.Balogh, H. Reme, P.W. Daly, A Study Of Orientation And Motion Of Flux Transfer Events Observed At High-Latitude Dayside Magnetopause, Chinese Journal Of Geophysics Vol.48, No.6, 2005, Pp: 1307_1315

[7]. Sonnerup and Scheible, minimum and maximum variance analysis in: Reprinted from Analysis Methods for Multi-Spacecraft Data G¨otz Paschmann and Patrick W. Daly (Eds.),ISSI Scientific Report SR-001 (Electronic edition 1.1) 1998, 2000 ISSI/ESA.

[8]. Paschmann, G. Daly P. W. (eds.) Analysis method for multispacecraft data. ISSI, Sc. Rept. SR-001 EAS Doordrecht, p.185, 1998.

[9]. L. F. Burgla, K. W. Behannon, Magnetic clouds: voyager observations between 2 and 4 AU.Solar phy.81, 181-192,1982.

[10]. E. K. J. Kilpua, A. Isavnin, A. Vourlidas, H. E. J. Koskinen, and L. Rodriguez, On the relationship between interplanetary coronal mass ejection and magnetic clouds, Ann. Geophys., 31, 1251–1265, 2013.

[11]. G. L. Siscoe, R. W. Suey, Significance criteria for variance matrix applications, Volume 77, Issue 7, P. 1321–1322, 1 March 1972.

[12]. E. Aguilar-Rodriguez, X. Blanco-Cano, N. Gopalswamy, Composition and magnetic structure of interplanetary coronal mass ejections at 1 AU. Advances in Space Research 38, 522–527 (2006).

[13]. Henke, T., Woch, J., Mall, U., et al. Differences in the O7+/O6+ ratio of magnetic cloud and non-cloud coronal mass ejections. Geophys. Res. Lett. 25, 3465–3468, 1998.

[14]. Henke, T., Woch, J., Schwenn, R., et al. Ionization state and magnetic topology of coronal mass ejections. J. Geophys. Res.106, 10597–10613, 2001.

[15]. J. T. Gosling, Coronal Mass Ejections And Magnetic Flux Ropes In Interplanetary Space. Geophysical Monograph Series, 58, 343-365.

[16]. Sonnerup, B.U.O., Cahill, L.J. Magnetopause structure and attitude form Explorer 12 observations. J. Geophys. Res. 72, 171–183, 1967.

[17]. Zurbuchen, T. H. and I. Richardson, In-Situ Solar Wind and Field Signatures of Interplanetary Coronal Mass Ejections, Space Sci. Rev.2004.

[18]. ACE List (Richardson and Cane list): http://www.srl.caltech.edu/ACE/ASC/DATA/level3/icmetable2.htm.

[19]. Richardson, I. G. and Cane, H. V.: Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties, Sol. Phys., 264, 189–237, 2010.

[20]. Richardson, I.G., Cane, H.V. Regions of abnormally low proton temperature in the solar wind (1965–1991) and their association with ejecta. J. Geophys. Res. 100, 23397–23412, 1995.