IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 9 - Issue 5, May 2020 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Analysis Of Quantum Cryptography For Secure Satellite Communication

[Full Text]

 

AUTHOR(S)

Veenu Yadav, Deepshikha Agarwal

 

KEYWORDS

Cryptography, Quantum, Qbits, Entanglement, Quantum Key Distribution, Error correction. Secure, Satellite communication

 

ABSTRACT

This paper present an analysis on the use of Quantum Cryptography (QC) to provide secure communication over the network. The transmission of the data is a very powerful information secure operation to entire Quantum Key Distribution (QKD). This paper presents to communicate satellite-based over the global quantum communication network, to achieve a long distance, to share the data quantum signal by optical fiber to cover the 250 kilometers in distance. Currently, the problem is the transmission of data in quantum communication; the signal weakens for long distances. This paper also proposes an application in satellite communication

 

REFERENCES

[1]. V. Makarov and D.R. Hjele,“Faked states attack on quantum cryptosystems”, J. Mod. Opt., Vol.52, No.5, pp.691–705,2005.
[2]. V. Makarov, “Controlling passively quenched single photon de- tectors by bright light”, New J. Phys., Vol.11, No.6, Article ID 065003, 18 pages, 2009.
[3]. H.W. Li, S. Wang, J.Z. Huang, et al., “Attacking a practical quantum-key distribution system with wavelength-dependent beam-splitterand multiwavelength sources”, Phys. Rev. A, Vol.84, No.6, Article ID 062308, 5 pages, 2011.
[4]. H.K. Lo, M. Curty and B. Qi, “Measurement-device- independent quantum key distribution”, Phys. Rev. Lett., Vol.108, No.13, Article ID 130503, 5 pages, 2012.
[5]. Y. Liu, T.Y. Chen, L.J. Wang, et al., “Experimental measurement device-independent quantum key distribution”, Phys. Rev. Lett., Vol.111, No.13, Article ID 130502, 5 pages, 2013.
[6]. Z. Tang, Z. Liao, F. Xu, et al., “Experimental demonstration of polarization encoding measurement-device-independent quan- tum key distribution”, Phys. Rev. Lett., Vol.112, No.19, Article ID 190503, 5 pages, 2014.
[7]. H. Inamori, N. Lu¨tkenhaus and D. Mayers, “Unconditional security of practical quantum key distribution”, Eur. Phys. J. D, Vol.41, No.3, pp.599–627, 2007.
[8]. D. Gottesman, H.K. Lo, N. Lu¨tkenhaus, et al., “Security of quantum key distribution with imperfect devices”, Quantum Inf. Comput., Vol.4, No.5, pp.325–360, 2004.
[9]. W.Y. Hwang, H.Y. Su and J. Bae, “Improved measurement- device-independent quantum key distribution with uncharac- terized qubits”, Phys. Rev. A, Vol.95, No.6, Article ID 062313, 4 pages, 2017.
[10]. X.L. Hu, Y.H. Zhou, Z.W. Yu, et al., “Practical measurement- device-independent quantum key distribution without vacuum sources”, Phys. Rev. A, Vol.95, No.3, Article ID 032331, 6 pages, 2017.
[11]. Jiang, Z.W. Yu and X.B. Wang, “Measurement-device- independent quantum key distribution with source state errors and statistical fluctuation”, Phys. Rev. A, Vol.95, No.3, Article ID 032325, 5pages, 2017. [12] C.M. Zhang, J.R. Zhu and Q. Wang, “Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution”, Phys. Rev. A, Vol.95, No.3, Arti- cle ID 032309, 5 pages, 2017.
[12]. N. Lo Piparo, M. Razavi and W.J. Munro, “Measurement- device-independent quantum key distribution with nitrogen va- cancy centers in diamond”, Phys. Rev. A, Vol.95, No.2, Article ID 022338, 12 pages, 2017.
[13]. N. Li, Y. Zhang, S. Wen, et al., “Security analysis of measurement-device-independent quantum key distribution in collective-rotation noisy environment”, Int. J. Theor. Phys., Vol.1, No.12, pp.1–12, 2017.
[14]. J. Li, N. Li, L.L. Li, et al., “One step quantum key distribu- tion based on EPR entanglement”, Sci. Rep., Vol.6, Article ID 28767, 9 pages, 2016.
[15]. N. Li, J. Li, L.L. Li, et al., “Deterministic secure quantum communication and authentication protocol based on extended GHZ-W state and quantum one-time pad”, Int. J. Theor. Phys.,Vol.55, No.8, pp.3579–3587, 2016.
[16]. ] S.B. Zhang, Z.H. Xie, Y.F. Yin, et al.,“Study on quantum trust model based on node trust evaluation”, Chinese Journal of Electronics, Vol.26, No.3, pp.608–613, 2017.
[17]. Y.J. Zhao, X.W. Chen, Z.G. Shi, et al., “Implementation of one- way quantum computing with a hybrid solid-state quantum sys- tem”, Chinese Journal of Electronics, Vol.26, No.1, pp.27–34, 2017.
[18]. D. Gottesman, H.K. Lo, N. Lu¨tkenhaus, et al.,“Security of quantum key distribution with imperfect devices”, Quantum Inf. Comput., Vol.4, No.5, pp.325–360, 2004.
[19]. W.Y. Hwang, H.Y. Su and J. Bae, “Improved measurement- device-independent quantum key distribution with uncharac- terized qubits”, Phys. Rev. A, Vol.95, No.6, Article ID 062313, 4 pages, 2017.
[20]. X.L. Hu, Y.H. Zhou, Z.W. Yu, et al., “Practical measurement- device-independent quantum key distribution without vacuum sources”, Phys. Rev. A, Vol.95, No.3, Article ID 032331, 6 pages, 2017.
[21]. C. Jiang, Z.W. Yu and X.B. Wang, “Measurement-device- independent quantum key distribution with source state errors and statistical fluctuation”, Phys. Rev. A, Vol.95, No.3, Article ID 032325, 5pages, 2017.
[22]. C.M. Zhang, J.R. Zhu and Q. Wang, “Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution”, Phys. Rev. A, Vol.95, No.3, Arti- cle ID 032309, 5 pages, 2017.
[23]. N. Lo Piparo, M. Razavi and W.J. Munro, “Measurement- device-independent quantum key distribution with nitrogen va- cancy centers in diamond”, Phys. Rev. A, Vol.95, No.2, Article ID 022338, 12 pages, 2017.
[24]. N. Li, Y. Zhang, S. Wen, et al., “Security analysis of measurement-device-independent quantum key distribution in collective-rotation noisy environment”, Int. J. Theor. Phys., Vol.1, No.12, pp.1–12, 2017.
[25]. J. Li, N. Li, L.L. Li, et al., “One step quantum key distribu- tion based on EPR entanglement”, Sci. Rep., Vol.6, Article ID 28767, 9 pages, 2016.
[26]. N. Li, J. Li, L.L. Li, et al., “Deterministic secure quantum communication and authentication protocol based on extended GHZ-W state and quantum one-time pad”, Int. J. Theor. Phys., Vol.55, No.8, pp.3579–3587, 2016.
[27]. S.B. Zhang, Z.H. Xie, Y.F. Yin, et al., “Study on quantum trust model based on node trust evaluation”, Chinese Journal of Electronics, Vol.26, No.3, pp.6086-13, 2017.
[28]. [29] Y.J. Zhao, X.W. Chen, Z.G. Shi, et al., “Implementation of one- way quantum computing with a hybrid solid-state quantum sys- tem”, Chinese Journal of Electronics, Vol.26, No.1, pp.27–34, 2017.
[29]. H.L. Yin, T.Y. Chen and Z.W. Yu, “Measurement-device- independent quantum key distribution over a 404 km optical fiber”, Phys. Rev. Lett., Vol.117, No.19, Article ID 190501, 5 pages, 2016.
[30]. Z. Li, Y.C. Zhang, F. Xu, et al., “Continuous-variable measurement-device-independent quantum key distribution”, Phys. Rev. A, Vol.89, No.5, Article ID 052301, 8 pages, 2014.
[31]. S. Pirandola, C. Ottaviani, G. Spedalieri, et al., “High-rate measurement-device-independent quantum cryptography”, Na- ture Photon, Vol.9, No.6, pp.397–402, 2015.
[32]. C.H. Bennett, F. Bessette, G. Brassard, et al., “Experimental quantum cryptography”, J. Cryptol., Vol.5, No.1, pp.3–28, 1992.
[33]. P. Jouguet, S. Kunz-Jacques, A. Leverrier, et al., “Experimental demonstration of long-distance continuous-variable quan- tum key distribution”, Nature Photon, Vol.7, No.5, pp.378–381, 2013.
[34]. D. Huang, P. Huang, D. Lin, et al., “Long-distance continuous- variable quantum key distribution by controlling excess noise”, Sci. Rep., Vol.6, Article ID 19201, 9 pages, 2016.