IJSTR

International Journal of Scientific & Technology Research

Home About Us Scope Editorial Board Blog/Latest News Contact Us
0.2
2019CiteScore
 
10th percentile
Powered by  Scopus
Scopus coverage:
Nov 2018 to May 2020

CALL FOR PAPERS
AUTHORS
DOWNLOADS
CONTACT

IJSTR >> Volume 9 - Issue 5, May 2020 Edition



International Journal of Scientific & Technology Research  
International Journal of Scientific & Technology Research

Website: http://www.ijstr.org

ISSN 2277-8616



Color Test For Screening Chemical Components Of Protein Hydrolyzed Extract From Non-Shell Small Crab (Portunus Pelagicus) Waste

[Full Text]

 

AUTHOR(S)

Putut Har Riyadi, Yudhomenggolo Sastro Darmanto, Apri Dwi Anggo, Sumardianto, Laras Rianingsih

 

KEYWORDS

color test, chemical components, hydrolizate, small scrab, waste.

 

ABSTRACT

Fisheries industry wastes such as crab (Portunus pelagicus) have the shell and non-shell waste. The effort to overcome and reduce waste is to use it optimally. One of them is by hydrolysis technology which can produce extracts that have bioactivity. The purpose of this study was to determine and obtain a description of the chemical components in the protein extracts of crab waste (Portunus pelagicus) non-shell crab. The study was conducted by color testing, namely flavonoids, alkaloids (Meyer, Dragendorf, Bouchardat), tannins, terpenoids (steroids, triterpenoids), polyphenols, and saponins. Screening and identification results show the presence of chemical components tannins, triterpenoids, and polyphenols from protein crab waste hydrolysates (Portunus pelagicus) non-shell, whereas for flavonoids, alkaloids, steroids, and saponins are not was found. These chemical components have activities as antioxidants, anti-cancer, antimicrobial, cardioprotective, antidiabetic, anti-obesity, hepatoprotective, anti-bacterial, anti-anxiolytic, analgesic, anti-nociceptive. The extract has the potential to be developed in the health field as a pharmaceutical or nutraceutical.

 

REFERENCES

[1]. N. H. Ishak, & N. M. Sarbon, Optimization of the enzymatic hydrolysis conditions of waste from shortfin scad (Decapterus Macrosoma) for the production of angiotensin I-converting enzyme (ACE) inhibitory peptide using response surface methodology, International Food Research Journal, Vol. 24, no. 4, pp. 1735–1743, 2017.
[2]. P. A. Harnedy, & R. J. FitzGerald, 2012. Bioactive peptides from marine processing waste and shellfish: A review. Journal of Functional Foods, Vol. 4, no. 1, pp. 6–24, 2012.
[3]. R. Balti, A. Bougatef, N. E. H. Ali, D. Zekri, A. Barkia, & M. Nasri, Influence of degree of hydrolysis on functional properties and angiotensin I-converting enzyme-inhibitory activity of protein hydrolysates from cuttlefish (Sepia officinalis) by-products, Journal of the Science of Food and Agriculture, Vol. 90 no. 12, pp. 2006–2014, 2014.
[4]. O. Abdelhadi, M. Jridi, I. Jemil, L. Mora, F. Toldra, M-C. Aristoy, & R. Nasri, Combine biocatalytic conversion of smooth hound viscera : Protein hydrolysates elaboration and assessment of their antioxidant, anti-ACE and antibacterial activities, Food Research International, Vol. 86, pp. 9–23, 2016.
[5]. A. Bougatef, N. Nedjar-Arroume, R. Ravallec-Plé, Y. Leroy, D. Guillochon, A. Barkia, & M. Nasri, Angiotensin I-converting enzyme (ACE) inhibitory activities of sardinelle (Sardinella aurita) by-products protein hydrolysates obtained by treatment with microbial and visceral fish serine proteases, Food Chemistry, Vol. 111, no. 2, pp. 350–356, 2008.
[6]. J. Roslan, K. Faezah, N. Abdullah, & S. Mazlina, Characterization of Fish Protein Hydrolysate from Tilapia (Oreochromis niloticus) by-Product, Agriculture and Agricultural Science Procedia, Vol. 2, pp. 312–319, 2014.
[7]. P. H. Riyadi, E. Suprayitno, A. Aulanni’am, & T. D. Sulistiyati, Chemical Characteristics and Amino Acids Profile of Protein Hydrolysates of Nile Tilapia (Oreochromis niloticus) Viscera, World Vet. J., Vol. 9, No. 4, pp. 324-328, 2019.
[8]. P. H. Riyadi, Bioactive Peptide for Lowering Pressure Blood from Fisheris by-Product, J. Peng & Biotek Hasil Pi, Vol. 7, No.1, pp. 1–6, 2018.
[9]. Y. Mine, E. Li-Chan, & B. Jiang, Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals. Wiley-Blackwell, USA, 2010, ISBN: 9780813813110, (Book style).
[10]. H. Nasri, A. Baradaran, Shirzad, & M. Rafieian-Kopaei, New concepts in nutraceuticals as alternative for pharmaceuticals. International Journal of Preventive Medicine, Vol. 5, No. 12, pp. 1487–1499, 2014
[11]. G. Hardy, Nutraceuticals and functional foods: introduction and meaning. Nutrition, Vol. 16, No. 7/8, pp. 688–689, 2000.
[12]. E. Susanto, & A. S. Fahmi, Senyawa Fungsional Dari Ikan : Aplikasinya Dalam Pangan. Jurnal Aplikasi Teknologi Pangan, Vol. 1, No. 4, pp. 95–102, 2012.
[13]. N. T. Hoyle, & J. H. Merrit, Quality of Fish Protein Hydrolysates from Herring (Clupea harengus). Journal of Food Science, Vol. 59 No. 1, pp. 76–79, 1994.
[14]. M. A. Amiza, Y. L. Kong, & A. L. Faazaz, Effects of degree of hydrolysis on physicochemical properties of cobia (Rachycentron canadum) frame hydrolysate. International Food Research Journal, 19(1), 199–206, 2012.
[15]. J. B. Harborne, Phytochemical methods, 2nd edition. Chapman And Hall Publications, Vol. 288, 1984.
[16]. S. Skrovankova, D. Sumczynski, J. Mlcek, T. Jurikova, J. Sochor, Bioactive Compounds and Antioxidant Activity in Different Types of Berries, Int J Mol Sci, Vol. 16, pp. 24673–24706, 2015.
[17]. A. P. Gollucke, O. Jr. Aguiar, L. F. Barbisan, D. A. Ribeiro, Use of grape polyphenols against carcinogenesis: putative molecular mechanisms of action using in vitro and in vivo test systems. J Med Food, Vol. 16, pp. 199–205, 2013.
[18]. L. Marín, E. M. Miguélez, C. J. Villar, F. Lombó, 2015, Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties, Biomed Res Int, 905215, 2015 (Book style).
[19]. N. Gonzalez-Abuin, M. Pinent, A. Casanova-Marti, L. Arola, M. Blay, A. Ardevol, Procyanidins and their healthy protective effects against type 2 diabetes, Curr Med Chem, Vol. 22, pp. 39–50, 2015.
[20]. R. Firm, Nature's Chemicals, Oxford: Biology, 2010, (Book style).
[21]. A. Salminen, J. Ojala, J. Huuskonen, A. Kauppinen, T. Suuronen, K. Kaarniranta, Interaction of aging-associated signaling cascades: inhibition of NF-kappaB signaling by longevity factors FoxOs and SIRT1, Cell Mol Life Sci, Vol. 65, No. 7-8, pp. 1049-1058, 2008.
[22]. L. Melanie, Pentacyclic Triterpenes of the Lupane, Oleanane and Ursane Group as Tools in Cancer Therapy. Planta Medica, Vol. 75, No. 15, pp. 1549-1560, 2009.
[23]. Battineni, J. Kumar, P. K. Koneti, V. Bakshi, N. Boggula. Triterpenoids: A review. International Journal of Research in Pharmacy and Pharmaceutical Sciences, Vol. 3, No. 2, pp. 91-96, 2018.
[24]. S. Lecour, K. T. Lamont, Natural polyphenols and cardioprotection. Mini Rev Med Chem, Vol. 11, pp. 1191–1199, 2011.
[25]. J. Pérez-Jiménez, V. Neveu, F. Vos, A. Scalber, Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol Explorer database. Eur J Clin Nutr, Vol. 64, pp. S112–S120, 2010.
[26]. A. Singh, S. Holvoet, A. Mercenier, Dietary polyphenols in the prevention and treatment of allergic diseases, Clin Exp Allergy, Vol. 41, pp. 1346–1359, 2011.